From 121a1ca257a06ade31037aa3223a03826bf47e23 Mon Sep 17 00:00:00 2001 From: Eric Willigers Date: Sat, 18 Jan 2025 23:40:28 +1100 Subject: [PATCH] Sync exercises [no important files changed] --- .../practice/anagram/.docs/instructions.md | 11 ++--- .../atbash-cipher/.docs/instructions.md | 2 +- .../practice/atbash-cipher/.meta/config.json | 2 +- exercises/practice/bob/.meta/tests.toml | 5 ++ exercises/practice/bob/test_bob.zig | 12 ++--- .../collatz-conjecture/.docs/instructions.md | 28 +---------- .../collatz-conjecture/.docs/introduction.md | 28 +++++++++++ .../collatz-conjecture/.meta/config.json | 4 +- .../eliuds-eggs/.docs/introduction.md | 48 +++++++++++++------ exercises/practice/grains/.meta/config.json | 2 +- .../practice/hamming/.docs/instructions.md | 17 ++----- .../practice/hamming/.docs/introduction.md | 12 +++++ exercises/practice/hamming/.meta/config.json | 2 +- .../practice/knapsack/.docs/instructions.md | 8 ++-- .../practice/knapsack/.docs/introduction.md | 12 +++-- exercises/practice/leap/.meta/config.json | 2 +- exercises/practice/luhn/.docs/instructions.md | 11 ++--- exercises/practice/luhn/.docs/introduction.md | 11 +++++ exercises/practice/pig-latin/.meta/tests.toml | 3 ++ .../practice/pig-latin/test_pig_latin.zig | 7 +++ .../pythagorean-triplet/.docs/instructions.md | 2 +- .../pythagorean-triplet/.docs/introduction.md | 19 ++++++++ .../pythagorean-triplet/.meta/config.json | 4 +- .../rna-transcription/.docs/instructions.md | 6 +-- .../rna-transcription/.meta/config.json | 2 +- .../square-root/.docs/instructions.md | 17 ++++--- .../square-root/.docs/introduction.md | 10 ++++ .../sum-of-multiples/.docs/instructions.md | 29 +++++++---- .../sum-of-multiples/.docs/introduction.md | 6 +++ exercises/practice/yacht/.meta/config.json | 2 +- 30 files changed, 210 insertions(+), 114 deletions(-) create mode 100644 exercises/practice/collatz-conjecture/.docs/introduction.md create mode 100644 exercises/practice/hamming/.docs/introduction.md create mode 100644 exercises/practice/luhn/.docs/introduction.md create mode 100644 exercises/practice/pythagorean-triplet/.docs/introduction.md create mode 100644 exercises/practice/square-root/.docs/introduction.md create mode 100644 exercises/practice/sum-of-multiples/.docs/introduction.md diff --git a/exercises/practice/anagram/.docs/instructions.md b/exercises/practice/anagram/.docs/instructions.md index a7298485..dca24f52 100644 --- a/exercises/practice/anagram/.docs/instructions.md +++ b/exercises/practice/anagram/.docs/instructions.md @@ -1,13 +1,12 @@ # Instructions -Your task is to, given a target word and a set of candidate words, to find the subset of the candidates that are anagrams of the target. +Given a target word and one or more candidate words, your task is to find the candidates that are anagrams of the target. An anagram is a rearrangement of letters to form a new word: for example `"owns"` is an anagram of `"snow"`. A word is _not_ its own anagram: for example, `"stop"` is not an anagram of `"stop"`. -The target and candidates are words of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`). -Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `StoP` is not an anagram of `sTOp`. -The anagram set is the subset of the candidate set that are anagrams of the target (in any order). -Words in the anagram set should have the same letter case as in the candidate set. +The target word and candidate words are made up of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`). +Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `"StoP"` is not an anagram of `"sTOp"`. +The words you need to find should be taken from the candidate words, using the same letter case. -Given the target `"stone"` and candidates `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, `"Seton"`, the anagram set is `"tones"`, `"notes"`, `"Seton"`. +Given the target `"stone"` and the candidate words `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, and `"Seton"`, the anagram words you need to find are `"tones"`, `"notes"`, and `"Seton"`. diff --git a/exercises/practice/atbash-cipher/.docs/instructions.md b/exercises/practice/atbash-cipher/.docs/instructions.md index 21ca2ce0..1e7627b1 100644 --- a/exercises/practice/atbash-cipher/.docs/instructions.md +++ b/exercises/practice/atbash-cipher/.docs/instructions.md @@ -1,6 +1,6 @@ # Instructions -Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East. +Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East. The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards. The first letter is replaced with the last letter, the second with the second-last, and so on. diff --git a/exercises/practice/atbash-cipher/.meta/config.json b/exercises/practice/atbash-cipher/.meta/config.json index 4bfb8109..e4ada0d8 100644 --- a/exercises/practice/atbash-cipher/.meta/config.json +++ b/exercises/practice/atbash-cipher/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.zig" ] }, - "blurb": "Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.", + "blurb": "Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.", "source": "Wikipedia", "source_url": "https://en.wikipedia.org/wiki/Atbash" } diff --git a/exercises/practice/bob/.meta/tests.toml b/exercises/practice/bob/.meta/tests.toml index ea47d6bb..5299e289 100644 --- a/exercises/practice/bob/.meta/tests.toml +++ b/exercises/practice/bob/.meta/tests.toml @@ -71,6 +71,7 @@ description = "alternate silence" [66953780-165b-4e7e-8ce3-4bcb80b6385a] description = "multiple line question" +include = false [5371ef75-d9ea-4103-bcfa-2da973ddec1b] description = "starting with whitespace" @@ -83,3 +84,7 @@ description = "other whitespace" [12983553-8601-46a8-92fa-fcaa3bc4a2a0] description = "non-question ending with whitespace" + +[2c7278ac-f955-4eb4-bf8f-e33eb4116a15] +description = "multiple line question" +reimplements = "66953780-165b-4e7e-8ce3-4bcb80b6385a" diff --git a/exercises/practice/bob/test_bob.zig b/exercises/practice/bob/test_bob.zig index 4e2e3336..b4bece7e 100644 --- a/exercises/practice/bob/test_bob.zig +++ b/exercises/practice/bob/test_bob.zig @@ -123,12 +123,6 @@ test "alternate silence" { try testing.expectEqualStrings(expected, actual); } -test "multiple line question" { - const expected = "Whatever."; - const actual = response("\nDoes this cryogenic chamber make me look fat?\nNo."); - try testing.expectEqualStrings(expected, actual); -} - test "starting with whitespace" { const expected = "Whatever."; const actual = response(" hmmmmmmm..."); @@ -152,3 +146,9 @@ test "non-question ending with whitespace" { const actual = response("This is a statement ending with whitespace "); try testing.expectEqualStrings(expected, actual); } + +test "multiple line question" { + const expected = "Sure."; + const actual = response("\nDoes this cryogenic chamber make\n me look fat?"); + try testing.expectEqualStrings(expected, actual); +} diff --git a/exercises/practice/collatz-conjecture/.docs/instructions.md b/exercises/practice/collatz-conjecture/.docs/instructions.md index ba060483..af332a81 100644 --- a/exercises/practice/collatz-conjecture/.docs/instructions.md +++ b/exercises/practice/collatz-conjecture/.docs/instructions.md @@ -1,29 +1,3 @@ # Instructions -The Collatz Conjecture or 3x+1 problem can be summarized as follows: - -Take any positive integer n. -If n is even, divide n by 2 to get n / 2. -If n is odd, multiply n by 3 and add 1 to get 3n + 1. -Repeat the process indefinitely. -The conjecture states that no matter which number you start with, you will always reach 1 eventually. - -Given a number n, return the number of steps required to reach 1. - -## Examples - -Starting with n = 12, the steps would be as follows: - -0. 12 -1. 6 -2. 3 -3. 10 -4. 5 -5. 16 -6. 8 -7. 4 -8. 2 -9. 1 - -Resulting in 9 steps. -So for input n = 12, the return value would be 9. +Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture. diff --git a/exercises/practice/collatz-conjecture/.docs/introduction.md b/exercises/practice/collatz-conjecture/.docs/introduction.md new file mode 100644 index 00000000..c35bdeb6 --- /dev/null +++ b/exercises/practice/collatz-conjecture/.docs/introduction.md @@ -0,0 +1,28 @@ +# Introduction + +One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea. +On one page, a single question stood out: **Can every number find its way to 1?** +It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades. + +The rules were deceptively simple. +Pick any positive integer. + +- If it's even, divide it by 2. +- If it's odd, multiply it by 3 and add 1. + +Then, repeat these steps with the result, continuing indefinitely. + +Curious, you picked number 12 to test and began the journey: + +12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1 + +Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing. +At first, the sequence seemed unpredictable — jumping up, down, and all over. +Yet, the conjecture claims that no matter the starting number, we'll always end at 1. + +It was fascinating, but also puzzling. +Why does this always seem to work? +Could there be a number where the process breaks down, looping forever or escaping into infinity? +The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets. + +[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/ diff --git a/exercises/practice/collatz-conjecture/.meta/config.json b/exercises/practice/collatz-conjecture/.meta/config.json index 442e62e9..8779c163 100644 --- a/exercises/practice/collatz-conjecture/.meta/config.json +++ b/exercises/practice/collatz-conjecture/.meta/config.json @@ -17,6 +17,6 @@ ] }, "blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.", - "source": "An unsolved problem in mathematics named after mathematician Lothar Collatz", - "source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem" + "source": "Wikipedia", + "source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture" } diff --git a/exercises/practice/eliuds-eggs/.docs/introduction.md b/exercises/practice/eliuds-eggs/.docs/introduction.md index 49eaffd8..81989748 100644 --- a/exercises/practice/eliuds-eggs/.docs/introduction.md +++ b/exercises/practice/eliuds-eggs/.docs/introduction.md @@ -12,36 +12,54 @@ The position information encoding is calculated as follows: 2. Convert the number from binary to decimal. 3. Show the result on the display. -Example 1: +## Example 1 + +![Seven individual nest boxes arranged in a row whose first, third, fourth and seventh nests each have a single egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-coop.svg) ```text -Chicken Coop: _ _ _ _ _ _ _ |E| |E|E| | |E| +``` + +### Resulting Binary + +![1011001](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-binary.svg) + +```text + _ _ _ _ _ _ _ +|1|0|1|1|0|0|1| +``` -Resulting Binary: - 1 0 1 1 0 0 1 +### Decimal number on the display -Decimal number on the display: 89 -Actual eggs in the coop: +### Actual eggs in the coop + 4 + +## Example 2 + +![Seven individual nest boxes arranged in a row where only the fourth nest has an egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-coop.svg) + +```text + _ _ _ _ _ _ _ +| | | |E| | | | ``` -Example 2: +### Resulting Binary + +![0001000](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-binary.svg) ```text -Chicken Coop: - _ _ _ _ _ _ _ _ -| | | |E| | | | | + _ _ _ _ _ _ _ +|0|0|0|1|0|0|0| +``` -Resulting Binary: - 0 0 0 1 0 0 0 0 +### Decimal number on the display -Decimal number on the display: 16 -Actual eggs in the coop: +### Actual eggs in the coop + 1 -``` diff --git a/exercises/practice/grains/.meta/config.json b/exercises/practice/grains/.meta/config.json index 1d9768e6..06e90a68 100644 --- a/exercises/practice/grains/.meta/config.json +++ b/exercises/practice/grains/.meta/config.json @@ -18,5 +18,5 @@ }, "blurb": "Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.", "source": "The CodeRanch Cattle Drive, Assignment 6", - "source_url": "https://coderanch.com/wiki/718824/Grains" + "source_url": "https://web.archive.org/web/20240908084142/https://coderanch.com/wiki/718824/Grains" } diff --git a/exercises/practice/hamming/.docs/instructions.md b/exercises/practice/hamming/.docs/instructions.md index 020fdd02..8f47a179 100644 --- a/exercises/practice/hamming/.docs/instructions.md +++ b/exercises/practice/hamming/.docs/instructions.md @@ -1,26 +1,15 @@ # Instructions -Calculate the Hamming Distance between two DNA strands. +Calculate the Hamming distance between two DNA strands. -Your body is made up of cells that contain DNA. -Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells. -In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime! - -When cells divide, their DNA replicates too. -Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information. -If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred. -This is known as the "Hamming Distance". - -We read DNA using the letters C,A,G and T. +We read DNA using the letters C, A, G and T. Two strands might look like this: GAGCCTACTAACGGGAT CATCGTAATGACGGCCT ^ ^ ^ ^ ^ ^^ -They have 7 differences, and therefore the Hamming Distance is 7. - -The Hamming Distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :) +They have 7 differences, and therefore the Hamming distance is 7. ## Implementation notes diff --git a/exercises/practice/hamming/.docs/introduction.md b/exercises/practice/hamming/.docs/introduction.md new file mode 100644 index 00000000..8419bf47 --- /dev/null +++ b/exercises/practice/hamming/.docs/introduction.md @@ -0,0 +1,12 @@ +# Introduction + +Your body is made up of cells that contain DNA. +Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells. +In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime! + +When cells divide, their DNA replicates too. +Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information. +If we compare two strands of DNA and count the differences between them, we can see how many mistakes occurred. +This is known as the "Hamming distance". + +The Hamming distance is useful in many areas of science, not just biology, so it's a nice phrase to be familiar with :) diff --git a/exercises/practice/hamming/.meta/config.json b/exercises/practice/hamming/.meta/config.json index 23e5b67e..b4802163 100644 --- a/exercises/practice/hamming/.meta/config.json +++ b/exercises/practice/hamming/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.zig" ] }, - "blurb": "Calculate the Hamming difference between two DNA strands.", + "blurb": "Calculate the Hamming distance between two DNA strands.", "source": "The Calculating Point Mutations problem at Rosalind", "source_url": "https://rosalind.info/problems/hamm/" } diff --git a/exercises/practice/knapsack/.docs/instructions.md b/exercises/practice/knapsack/.docs/instructions.md index 3411db98..0ebf7914 100644 --- a/exercises/practice/knapsack/.docs/instructions.md +++ b/exercises/practice/knapsack/.docs/instructions.md @@ -1,11 +1,11 @@ # Instructions -Your task is to determine which items to take so that the total value of his selection is maximized, taking into account the knapsack's carrying capacity. +Your task is to determine which items to take so that the total value of her selection is maximized, taking into account the knapsack's carrying capacity. Items will be represented as a list of items. Each item will have a weight and value. All values given will be strictly positive. -Bob can take only one of each item. +Lhakpa can take only one of each item. For example: @@ -21,5 +21,5 @@ Knapsack Maximum Weight: 10 ``` For the above, the first item has weight 5 and value 10, the second item has weight 4 and value 40, and so on. -In this example, Bob should take the second and fourth item to maximize his value, which, in this case, is 90. -He cannot get more than 90 as his knapsack has a weight limit of 10. +In this example, Lhakpa should take the second and fourth item to maximize her value, which, in this case, is 90. +She cannot get more than 90 as her knapsack has a weight limit of 10. diff --git a/exercises/practice/knapsack/.docs/introduction.md b/exercises/practice/knapsack/.docs/introduction.md index 9b2bed8b..9ac9df59 100644 --- a/exercises/practice/knapsack/.docs/introduction.md +++ b/exercises/practice/knapsack/.docs/introduction.md @@ -1,8 +1,10 @@ # Introduction -Bob is a thief. -After months of careful planning, he finally manages to crack the security systems of a fancy store. +Lhakpa is a [Sherpa][sherpa] mountain guide and porter. +After months of careful planning, the expedition Lhakpa works for is about to leave. +She will be paid the value she carried to the base camp. -In front of him are many items, each with a value and weight. -Bob would gladly take all of the items, but his knapsack can only hold so much weight. -Bob has to carefully consider which items to take so that the total value of his selection is maximized. +In front of her are many items, each with a value and weight. +Lhakpa would gladly take all of the items, but her knapsack can only hold so much weight. + +[sherpa]: https://en.wikipedia.org/wiki/Sherpa_people#Mountaineering diff --git a/exercises/practice/leap/.meta/config.json b/exercises/practice/leap/.meta/config.json index c556ccbf..99006814 100644 --- a/exercises/practice/leap/.meta/config.json +++ b/exercises/practice/leap/.meta/config.json @@ -15,5 +15,5 @@ }, "blurb": "Determine whether a given year is a leap year.", "source": "CodeRanch Cattle Drive, Assignment 3", - "source_url": "https://coderanch.com/t/718816/Leap" + "source_url": "https://web.archive.org/web/20240907033714/https://coderanch.com/t/718816/Leap" } diff --git a/exercises/practice/luhn/.docs/instructions.md b/exercises/practice/luhn/.docs/instructions.md index 8cbe791f..5bbf007b 100644 --- a/exercises/practice/luhn/.docs/instructions.md +++ b/exercises/practice/luhn/.docs/instructions.md @@ -1,12 +1,10 @@ # Instructions -Given a number determine whether or not it is valid per the Luhn formula. +Determine whether a credit card number is valid according to the [Luhn formula][luhn]. -The [Luhn algorithm][luhn] is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers and Canadian Social Insurance Numbers. +The number will be provided as a string. -The task is to check if a given string is valid. - -## Validating a Number +## Validating a number Strings of length 1 or less are not valid. Spaces are allowed in the input, but they should be stripped before checking. @@ -22,7 +20,8 @@ The first step of the Luhn algorithm is to double every second digit, starting f We will be doubling ```text -4_3_ 3_9_ 0_4_ 6_6_ +4539 3195 0343 6467 +↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (double these) ``` If doubling the number results in a number greater than 9 then subtract 9 from the product. diff --git a/exercises/practice/luhn/.docs/introduction.md b/exercises/practice/luhn/.docs/introduction.md new file mode 100644 index 00000000..ec2bd709 --- /dev/null +++ b/exercises/practice/luhn/.docs/introduction.md @@ -0,0 +1,11 @@ +# Introduction + +At the Global Verification Authority, you've just been entrusted with a critical assignment. +Across the city, from online purchases to secure logins, countless operations rely on the accuracy of numerical identifiers like credit card numbers, bank account numbers, transaction codes, and tracking IDs. +The Luhn algorithm is a simple checksum formula used to ensure these numbers are valid and error-free. + +A batch of identifiers has just arrived on your desk. +All of them must pass the Luhn test to ensure they're legitimate. +If any fail, they'll be flagged as invalid, preventing errors or fraud, such as incorrect transactions or unauthorized access. + +Can you ensure this is done right? The integrity of many services depends on you. diff --git a/exercises/practice/pig-latin/.meta/tests.toml b/exercises/practice/pig-latin/.meta/tests.toml index c29168c5..d524305b 100644 --- a/exercises/practice/pig-latin/.meta/tests.toml +++ b/exercises/practice/pig-latin/.meta/tests.toml @@ -39,6 +39,9 @@ description = "first letter and ay are moved to the end of words that start with [bce94a7a-a94e-4e2b-80f4-b2bb02e40f71] description = "first letter and ay are moved to the end of words that start with consonants -> word beginning with q without a following u" +[e59dbbe8-ccee-4619-a8e9-ce017489bfc0] +description = "first letter and ay are moved to the end of words that start with consonants -> word beginning with consonant and vowel containing qu" + [c01e049a-e3e2-451c-bf8e-e2abb7e438b8] description = "some letter clusters are treated like a single consonant -> word beginning with ch" diff --git a/exercises/practice/pig-latin/test_pig_latin.zig b/exercises/practice/pig-latin/test_pig_latin.zig index d29b867d..3b39d040 100644 --- a/exercises/practice/pig-latin/test_pig_latin.zig +++ b/exercises/practice/pig-latin/test_pig_latin.zig @@ -73,6 +73,13 @@ test "first letter and ay are moved to the end of words that start with consonan try testing.expectEqualStrings(expected, actual); } +test "first letter and ay are moved to the end of words that start with consonants -> word beginning with consonant and vowel containing qu" { + const expected: []const u8 = "iquidlay"; + const actual = try pig_latin.translate(testing.allocator, "liquid"); + defer testing.allocator.free(actual); + try testing.expectEqualStrings(expected, actual); +} + test "some letter clusters are treated like a single consonant-word beginning with ch" { const expected: []const u8 = "airchay"; const actual = try pig_latin.translate(testing.allocator, "chair"); diff --git a/exercises/practice/pythagorean-triplet/.docs/instructions.md b/exercises/practice/pythagorean-triplet/.docs/instructions.md index 1c1a8aea..ced833d7 100644 --- a/exercises/practice/pythagorean-triplet/.docs/instructions.md +++ b/exercises/practice/pythagorean-triplet/.docs/instructions.md @@ -1,4 +1,4 @@ -# Instructions +# Description A Pythagorean triplet is a set of three natural numbers, {a, b, c}, for which, diff --git a/exercises/practice/pythagorean-triplet/.docs/introduction.md b/exercises/practice/pythagorean-triplet/.docs/introduction.md new file mode 100644 index 00000000..3453c6ed --- /dev/null +++ b/exercises/practice/pythagorean-triplet/.docs/introduction.md @@ -0,0 +1,19 @@ +# Introduction + +You are an accomplished problem-solver, known for your ability to tackle the most challenging mathematical puzzles. +One evening, you receive an urgent letter from an inventor called the Triangle Tinkerer, who is working on a groundbreaking new project. +The letter reads: + +> Dear Mathematician, +> +> I need your help. +> I am designing a device that relies on the unique properties of Pythagorean triplets — sets of three integers that satisfy the equation a² + b² = c². +> This device will revolutionize navigation, but for it to work, I must program it with every possible triplet where the sum of a, b, and c equals a specific number, N. +> Calculating these triplets by hand would take me years, but I hear you are more than up to the task. +> +> Time is of the essence. +> The future of my invention — and perhaps even the future of mathematical innovation — rests on your ability to solve this problem. + +Motivated by the importance of the task, you set out to find all Pythagorean triplets that satisfy the condition. +Your work could have far-reaching implications, unlocking new possibilities in science and engineering. +Can you rise to the challenge and make history? diff --git a/exercises/practice/pythagorean-triplet/.meta/config.json b/exercises/practice/pythagorean-triplet/.meta/config.json index 25fc4054..b022ed8c 100644 --- a/exercises/practice/pythagorean-triplet/.meta/config.json +++ b/exercises/practice/pythagorean-triplet/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.zig" ] }, - "blurb": "There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the triplet.", - "source": "Problem 9 at Project Euler", + "blurb": "Given an integer N, find all Pythagorean triplets for which a + b + c = N.", + "source": "A variation of Problem 9 from Project Euler", "source_url": "https://projecteuler.net/problem=9" } diff --git a/exercises/practice/rna-transcription/.docs/instructions.md b/exercises/practice/rna-transcription/.docs/instructions.md index 36da381f..4dbfd3a2 100644 --- a/exercises/practice/rna-transcription/.docs/instructions.md +++ b/exercises/practice/rna-transcription/.docs/instructions.md @@ -1,12 +1,12 @@ # Instructions -Your task is determine the RNA complement of a given DNA sequence. +Your task is to determine the RNA complement of a given DNA sequence. Both DNA and RNA strands are a sequence of nucleotides. -The four nucleotides found in DNA are adenine (**A**), cytosine (**C**), guanine (**G**) and thymine (**T**). +The four nucleotides found in DNA are adenine (**A**), cytosine (**C**), guanine (**G**), and thymine (**T**). -The four nucleotides found in RNA are adenine (**A**), cytosine (**C**), guanine (**G**) and uracil (**U**). +The four nucleotides found in RNA are adenine (**A**), cytosine (**C**), guanine (**G**), and uracil (**U**). Given a DNA strand, its transcribed RNA strand is formed by replacing each nucleotide with its complement: diff --git a/exercises/practice/rna-transcription/.meta/config.json b/exercises/practice/rna-transcription/.meta/config.json index 3b08f3ea..2d50aafc 100644 --- a/exercises/practice/rna-transcription/.meta/config.json +++ b/exercises/practice/rna-transcription/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.zig" ] }, - "blurb": "Given a DNA strand, return its RNA Complement Transcription.", + "blurb": "Given a DNA strand, return its RNA complement.", "source": "Hyperphysics", "source_url": "https://web.archive.org/web/20220408112140/http://hyperphysics.phy-astr.gsu.edu/hbase/Organic/transcription.html" } diff --git a/exercises/practice/square-root/.docs/instructions.md b/exercises/practice/square-root/.docs/instructions.md index e9905e9d..d258b868 100644 --- a/exercises/practice/square-root/.docs/instructions.md +++ b/exercises/practice/square-root/.docs/instructions.md @@ -1,13 +1,18 @@ # Instructions -Given a natural radicand, return its square root. +Your task is to calculate the square root of a given number. -Note that the term "radicand" refers to the number for which the root is to be determined. -That is, it is the number under the root symbol. +- Try to avoid using the pre-existing math libraries of your language. +- As input you'll be given a positive whole number, i.e. 1, 2, 3, 4… +- You are only required to handle cases where the result is a positive whole number. -Check out the Wikipedia pages on [square root][square-root] and [methods of computing square roots][computing-square-roots]. +Some potential approaches: -Recall also that natural numbers are positive real whole numbers (i.e. 1, 2, 3 and up). +- Linear or binary search for a number that gives the input number when squared. +- Successive approximation using Newton's or Heron's method. +- Calculating one digit at a time or one bit at a time. -[square-root]: https://en.wikipedia.org/wiki/Square_root +You can check out the Wikipedia pages on [integer square root][integer-square-root] and [methods of computing square roots][computing-square-roots] to help with choosing a method of calculation. + +[integer-square-root]: https://en.wikipedia.org/wiki/Integer_square_root [computing-square-roots]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots diff --git a/exercises/practice/square-root/.docs/introduction.md b/exercises/practice/square-root/.docs/introduction.md new file mode 100644 index 00000000..1d692934 --- /dev/null +++ b/exercises/practice/square-root/.docs/introduction.md @@ -0,0 +1,10 @@ +# Introduction + +We are launching a deep space exploration rocket and we need a way to make sure the navigation system stays on target. + +As the first step in our calculation, we take a target number and find its square root (that is, the number that when multiplied by itself equals the target number). + +The journey will be very long. +To make the batteries last as long as possible, we had to make our rocket's onboard computer very power efficient. +Unfortunately that means that we can't rely on fancy math libraries and functions, as they use more power. +Instead we want to implement our own square root calculation. diff --git a/exercises/practice/sum-of-multiples/.docs/instructions.md b/exercises/practice/sum-of-multiples/.docs/instructions.md index 7b7ec006..d69f890e 100644 --- a/exercises/practice/sum-of-multiples/.docs/instructions.md +++ b/exercises/practice/sum-of-multiples/.docs/instructions.md @@ -1,18 +1,27 @@ # Instructions -Given a list of factors and a limit, add up all the unique multiples of the factors that are less than the limit. -All inputs will be greater than or equal to zero. +Your task is to write the code that calculates the energy points that get awarded to players when they complete a level. -## Example +The points awarded depend on two things: -Suppose the limit is 20 and the list of factors is [3, 5]. -We need to find the sum of all unique multiples of 3 and 5 that are less than 20. +- The level (a number) that the player completed. +- The base value of each magical item collected by the player during that level. -Multiples of 3 less than 20: 3, 6, 9, 12, 15, 18 -Multiples of 5 less than 20: 5, 10, 15 +The energy points are awarded according to the following rules: -The unique multiples are: 3, 5, 6, 9, 10, 12, 15, 18 +1. For each magical item, take the base value and find all the multiples of that value that are less than the level number. +2. Combine the sets of numbers. +3. Remove any duplicates. +4. Calculate the sum of all the numbers that are left. -The sum of the unique multiples is: 3 + 5 + 6 + 9 + 10 + 12 + 15 + 18 = 78 +Let's look at an example: -So, the answer is 78. +**The player completed level 20 and found two magical items with base values of 3 and 5.** + +To calculate the energy points earned by the player, we need to find all the unique multiples of these base values that are less than level 20. + +- Multiples of 3 less than 20: `{3, 6, 9, 12, 15, 18}` +- Multiples of 5 less than 20: `{5, 10, 15}` +- Combine the sets and remove duplicates: `{3, 5, 6, 9, 10, 12, 15, 18}` +- Sum the unique multiples: `3 + 5 + 6 + 9 + 10 + 12 + 15 + 18 = 78` +- Therefore, the player earns **78** energy points for completing level 20 and finding the two magical items with base values of 3 and 5. diff --git a/exercises/practice/sum-of-multiples/.docs/introduction.md b/exercises/practice/sum-of-multiples/.docs/introduction.md new file mode 100644 index 00000000..69cabeed --- /dev/null +++ b/exercises/practice/sum-of-multiples/.docs/introduction.md @@ -0,0 +1,6 @@ +# Introduction + +You work for a company that makes an online, fantasy-survival game. + +When a player finishes a level, they are awarded energy points. +The amount of energy awarded depends on which magical items the player found while exploring that level. diff --git a/exercises/practice/yacht/.meta/config.json b/exercises/practice/yacht/.meta/config.json index 515f229e..473f3df0 100644 --- a/exercises/practice/yacht/.meta/config.json +++ b/exercises/practice/yacht/.meta/config.json @@ -14,6 +14,6 @@ ] }, "blurb": "Score a single throw of dice in the game Yacht.", - "source": "James Kilfiger, using wikipedia", + "source": "James Kilfiger, using Wikipedia", "source_url": "https://en.wikipedia.org/wiki/Yacht_(dice_game)" }