-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRTOD_ROS.py
103 lines (82 loc) · 3.97 KB
/
RTOD_ROS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# USAGE
# python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel --topic /color/image_raw
import numpy as np
import argparse
import imutils
import time
import cv2
from ROS_ImageSubscriber import ImageSubscriberWrapper
class RTOD:
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
def __init__(self, args_):
self.args = args_
self.callback = args_.get("callback")
# load our serialized model from disk
print("[INFO] loading model...")
self.net = cv2.dnn.readNetFromCaffe(self.args["prototxt"], self.args["model"])
def ProcessNumpyImage(self, frame):
frameResized = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frameResized.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frameResized, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
self.net.setInput(blob)
detections = self.net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
classIdx = int(detections[0, 0, i, 1])
className = RTOD.CLASSES[classIdx]
classFilter = self.args.get("class")
classColor = RTOD.COLORS[classIdx]
isClassFiltered = (classFilter == False) or (classFilter == className)
isConfidenceFiltered = (confidence > self.args.get("confidence"))
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if isConfidenceFiltered and isClassFiltered:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(className, confidence * 100)
if (self.callback):
self.callback(startX, startY, endX, endY, className)
#todo : move drawing to a subclass
cv2.rectangle(frameResized, (startX, startY), (endX, endY), classColor, 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
print("#{} label '{}' rect [{} {} {} {}]".format(i, label, startY, endY, startX, endX))
cv2.putText(frameResized, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, classColor, 2)
#cv2.imwrite('rtod_result.png', frameResized)
#cv2.imshow("Frame", frame)
#cv2.imshow("Frame resized", frameResized)
#cv2.waitKey(1)
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--topic", type=str, required=True,
help="ROS topic name to subscribe on")
ap.add_argument("-l", "--class", type=str, default="",
help="Filter specific detection class")
if __name__ == '__main__':
args = vars(ap.parse_args())
rtod = RTOD(args)
ros_subscriber = ImageSubscriberWrapper(args["topic"], rtod.ProcessNumpyImage)
# do a bit of cleanup
cv2.destroyAllWindows()