|
| 1 | +import time |
| 2 | +import torch |
| 3 | +import tensor_comprehensions as tc |
| 4 | +#import sklearn |
| 5 | +#from sklearn.linear_model import LinearRegression |
| 6 | +#from sklearn.ensemble import GradientBoostingRegressor |
| 7 | +import numpy as np |
| 8 | +#from sklearn.model_selection import train_test_split |
| 9 | +#from tensor_comprehensions.mapping_options import Options |
| 10 | +from multiprocessing import Pool |
| 11 | +from itertools import repeat |
| 12 | +import utils |
| 13 | +#from tqdm import tqdm |
| 14 | + |
| 15 | +(tc_code, tc_name, inp, init_input_sz) = utils.get_convolution_example(size_type="input", inp_sz_list=[8,2,28,28,8,1,1]) |
| 16 | + |
| 17 | +NB_HYPERPARAMS, INIT_INPUT_SZ = utils.NB_HYPERPARAMS, utils.INIT_INPUT_SZ |
| 18 | + |
| 19 | +def createY(x): |
| 20 | + y = utils.evalTime(x) |
| 21 | + return y |
| 22 | + |
| 23 | +def getRandom(): |
| 24 | + opt_v = np.zeros(NB_HYPERPARAMS).astype(int) |
| 25 | + for i in range(opt_v.shape[0]): |
| 26 | + opt_v[i] = np.random.randint(utils.cat_sz[i]) |
| 27 | + return opt_v |
| 28 | + |
| 29 | +def makeDataset(): |
| 30 | + from tqdm import tqdm |
| 31 | + sz = 500 |
| 32 | + datasetX, datasetY = [], [] |
| 33 | + for _ in tqdm(range(sz)): |
| 34 | + opt = getRandom() |
| 35 | + yi = createY(opt) |
| 36 | + datasetX.append(opt) |
| 37 | + datasetY.append(yi) |
| 38 | + #with Pool(sz) as p: |
| 39 | + # datasetY = p.starmap(createY, datasetX) |
| 40 | + return np.array(datasetX), np.array(datasetY) |
| 41 | + |
| 42 | +def learn(): |
| 43 | + #from sklearn.linear_model import LinearRegression |
| 44 | + from sklearn.ensemble import GradientBoostingRegressor |
| 45 | + from sklearn.model_selection import train_test_split |
| 46 | + datasetX, datasetY = makeDataset() |
| 47 | + print(min(datasetY)) |
| 48 | + Xtrain, Xtest, Ytrain, Ytest = train_test_split(datasetX, datasetY, test_size=0.2, random_state = 42) |
| 49 | + model1 = GradientBoostingRegressor(n_estimators=1000) |
| 50 | + model1.fit(Xtrain, Ytrain) |
| 51 | + pred0 = model1.predict(Xtrain) |
| 52 | + pred1 = model1.predict(Xtest) |
| 53 | + print(np.corrcoef(pred0, Ytrain)[0, 1]**2) |
| 54 | + print(np.corrcoef(pred1, Ytest)[0,1]**2) |
| 55 | + |
| 56 | +#learn() |
0 commit comments