Skip to content

Commit e0d6836

Browse files
committed
Update mpi4py examples
1 parent 95045de commit e0d6836

File tree

6 files changed

+14
-14
lines changed

6 files changed

+14
-14
lines changed

Parallel_Computing/Python/mpi4py/Example1/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ If you have installed <code>mpi4py</code> with <code>conda</code> and use the de
4545
#SBATCH --mem-per-cpu=4000
4646

4747
# Set up environment
48-
module load python/3.10.9-fasrc01
48+
module load python/3.10.12-fasrc01
4949
source activate python3_env1
5050

5151
# Run the program
@@ -56,9 +56,9 @@ If you opted out for installing mpi4py with your MPI flavor and/or version of ch
5656

5757
```bash
5858
# Set up environment
59-
module load python/3.10.9-fasrc01
59+
module load python/3.10.12-fasrc01
6060
module load gcc/12.2.0-fasrc01
61-
module load openmpi/4.1.5-fasrc01
61+
module load openmpi/4.1.5-fasrc03
6262
source activate python3_env2
6363
```
6464
and the "Run the program" section as follows:
@@ -96,4 +96,4 @@ Rank 12 out of 16
9696
Rank 13 out of 16
9797
Rank 14 out of 16
9898
Rank 15 out of 16
99-
```
99+
```

Parallel_Computing/Python/mpi4py/Example1/run.sbatch

100644100755
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
#SBATCH --mem-per-cpu=4000
99

1010
# Set up environment
11-
module load python/3.10.9-fasrc01
11+
module load python/3.10.12-fasrc01
1212
source activate python3_env1
1313

1414
# Run program

Parallel_Computing/Python/mpi4py/Example1/run_ompi.sbatch

100644100755
Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,9 @@
88
#SBATCH --mem-per-cpu=4000
99

1010
# Set up environment
11-
module load python/3.10.9-fasrc01
11+
module load python/3.10.12-fasrc01
1212
module load gcc/12.2.0-fasrc01
13-
module load openmpi/4.1.5-fasrc01
13+
module load openmpi/4.1.5-fasrc03
1414
source activate python3_env2
1515

1616
# Run program

Parallel_Computing/Python/mpi4py/Example2/run.sbatch

100644100755
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
#SBATCH --mem-per-cpu=4000
99

1010
# Set up environment
11-
module load python/3.10.9-fasrc01
11+
module load python/3.10.12-fasrc01
1212
source activate python3_env1
1313

1414
# Run the program

Parallel_Computing/Python/mpi4py/Example2/run_ompi.sbatch

100644100755
Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,9 @@
88
#SBATCH --mem-per-cpu=4000
99

1010
# Set up environment
11-
module load python/3.10.9-fasrc01
11+
module load python/3.10.12-fasrc01
1212
module load gcc/12.2.0-fasrc01
13-
module load openmpi/4.1.5-fasrc01
13+
module load openmpi/4.1.5-fasrc03
1414
source activate python3_env2
1515

1616
# Run the program

Parallel_Computing/Python/mpi4py/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ We recommend the [Mambaforge](https://github.com/conda-forge/miniforge#mambaforg
99
The most straightforward way to install <code>mpi4py</code> in your user space is to create a new [conda environment](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) with the <code>mpi4py</code> package. For instance, you can do something like the below:
1010

1111
```bash
12-
module load python/3.10.9-fasrc01
12+
module load python/3.10.12-fasrc01
1313
mamba create -n python3_env1 python numpy pip wheel mpi4py
1414
source activate python3_env1
1515
```
@@ -21,21 +21,21 @@ For most of the cases the above installation procedure should work well. However
2121
* Load compiler and MPI software modules:
2222
```bash
2323
module load gcc/12.2.0-fasrc01
24-
module load openmpi/4.1.5-fasrc01
24+
module load openmpi/4.1.5-fasrc03
2525
```
2626

2727
This will load [OpenMPI](https://www.open-mpi.org) in your user environment. You can also look at our [user documentation](https://docs.rc.fas.harvard.edu/kb/modules-intro) to learn more about software modules on the FAS cluster.
2828

2929
* Load a Python module:
3030

3131
```bash
32-
module load python/3.10.9-fasrc01
32+
module load python/3.10.12-fasrc01
3333
```
3434

3535
* Create a conda environment:
3636

3737
```bash
38-
conda create -n python3_env2 python numpy pip wheel
38+
mamba create -n python3_env2 python numpy pip wheel
3939
```
4040

4141
* Install <code>mpi4py</code> with <code>pip</code>:

0 commit comments

Comments
 (0)