You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File ~/.local/lib/python3.8/site-packages/flair/nn/model.py:105, in Model.save(self, model_file, checkpoint)
100 def save(self, model_file: Union[str, Path], checkpoint: bool = False):
101 """Saves the current model to the provided file.
102
103 :param model_file: the model file
104 """
--> 105 model_state = self._get_state_dict()
107 # write out a "model card" if one is set
108 if self.model_card is not None:
File ~/.local/lib/python3.8/site-packages/flair/nn/model.py:74, in Model._get_state_dict(self)
72 def _get_state_dict(self):
73 """Returns the state dictionary for this model."""
---> 74 state_dict = {"state_dict": self.state_dict()}
76 # Always include the name of the Model class for which the state dict holds
77 state_dict["cls"] = self.class.name
File /appli/anaconda/lib/python3.8/site-packages/torch/nn/modules/module.py:1259, in Module.state_dict(self, destination, prefix, keep_vars)
1257 for name, module in self._modules.items():
1258 if module is not None:
-> 1259 module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
1260 for hook in self._state_dict_hooks.values():
1261 hook_result = hook(self, destination, prefix, local_metadata)
File /appli/anaconda/lib/python3.8/site-packages/torch/nn/modules/module.py:1259, in Module.state_dict(self, destination, prefix, keep_vars)
1257 for name, module in self._modules.items():
1258 if module is not None:
-> 1259 module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
1260 for hook in self._state_dict_hooks.values():
1261 hook_result = hook(self, destination, prefix, local_metadata)
2023-06-14 10:23:37,825 DEV : loss 0.07393791526556015 - f1-score (micro avg) 0.7315
2023-06-14 10:23:37,883 - 0 epochs without improvement
2023-06-14 10:23:37,884 - 0 epochs without improvement
2023-06-14 10:23:37,885 - 0 epochs without improvement
2023-06-14 10:23:37,885 saving best model
Logs and Stack traces
No response
Screenshots
No response
Additional Context
No response
Environment
:219: RuntimeWarning: scipy._lib.messagestream.MessageStream size changed, may indicate binary incompatibility. Expected 56 from C header, got 64 from PyObject
Versions:
Flair
0.12.2
Pytorch
1.9.1+cu111
Transformers
4.21.0.dev0
GPU
True
The text was updated successfully, but these errors were encountered:
Hi @elazzouzi1080
updating torch to a newer version should fix your problem, however if you still want to use that old version, you can checkout #3272 and see if that works.
Describe the bug
When I want to save my best model after one epoch, I have this error: TypeError: state_dict() got multiple values for argument 'destination'
2023-06-14 10:23:21,212 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,212 Corpus: 5483 train + 5483 dev + 5483 test sentences
2023-06-14 10:23:21,213 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,213 Train: 5483 sentences
2023-06-14 10:23:21,214 (train_with_dev=False, train_with_test=False)
2023-06-14 10:23:21,214 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,214 Training Params:
2023-06-14 10:23:21,215 - learning_rate: "0.1"
2023-06-14 10:23:21,215 - mini_batch_size: "64"
2023-06-14 10:23:21,215 - max_epochs: "3"
2023-06-14 10:23:21,216 - shuffle: "True"
2023-06-14 10:23:21,216 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,216 Plugins:
2023-06-14 10:23:21,217 - AnnealOnPlateau | patience: '3', anneal_factor: '0.5', min_learning_rate: '0.0001'
2023-06-14 10:23:21,217 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,217 Final evaluation on model from best epoch (best-model.pt)
2023-06-14 10:23:21,217 - metric: "('micro avg', 'f1-score')"
2023-06-14 10:23:21,218 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,218 Computation:
2023-06-14 10:23:21,218 - compute on device: cuda:0
2023-06-14 10:23:21,219 - embedding storage: none
2023-06-14 10:23:21,219 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,219 Model training base path: "/donnees/home/elazzouzi/NER_BERT_BILSTM_CRF_FINAL/LSTM_CRF_FastText_mBERT"
2023-06-14 10:23:21,219 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,220 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:21,898 epoch 1 - iter 8/86 - loss 0.16275612 - time (sec): 0.68 - samples/sec: 4082.16 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:22,542 epoch 1 - iter 16/86 - loss 0.16906576 - time (sec): 1.32 - samples/sec: 4212.56 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:23,289 epoch 1 - iter 24/86 - loss 0.14910738 - time (sec): 2.07 - samples/sec: 4145.49 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:23,870 epoch 1 - iter 32/86 - loss 0.15717436 - time (sec): 2.65 - samples/sec: 4297.59 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:24,501 epoch 1 - iter 40/86 - loss 0.15527718 - time (sec): 3.28 - samples/sec: 4338.57 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:25,232 epoch 1 - iter 48/86 - loss 0.15027606 - time (sec): 4.01 - samples/sec: 4300.37 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:25,912 epoch 1 - iter 56/86 - loss 0.14482447 - time (sec): 4.69 - samples/sec: 4295.03 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:26,628 epoch 1 - iter 64/86 - loss 0.13921061 - time (sec): 5.41 - samples/sec: 4284.00 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:27,214 epoch 1 - iter 72/86 - loss 0.13296037 - time (sec): 5.99 - samples/sec: 4330.59 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:27,772 epoch 1 - iter 80/86 - loss 0.12782567 - time (sec): 6.55 - samples/sec: 4378.60 - lr: 0.100000 - momentum: 0.000000
2023-06-14 10:23:28,297 ----------------------------------------------------------------------------------------------------
2023-06-14 10:23:28,298 EPOCH 1 done: loss 0.1260 - lr: 0.100000
100%|██████████| 86/86 [00:09<00:00, 9.05it/s]
2023-06-14 10:23:37,825 DEV : loss 0.07393791526556015 - f1-score (micro avg) 0.7315
2023-06-14 10:23:37,883 - 0 epochs without improvement
2023-06-14 10:23:37,884 - 0 epochs without improvement
2023-06-14 10:23:37,885 - 0 epochs without improvement
2023-06-14 10:23:37,885 saving best model
TypeError Traceback (most recent call last)
Input In [27], in <cell line: 1>()
----> 1 trainer.train('/donnees/home/elazzouzi/NER_BERT_BILSTM_CRF_FINAL/LSTM_CRF_FastText_mBERT/',
2 train_with_dev = False,
3 learning_rate = 0.1,
4 mini_batch_size = 64,
5 #optimizer = torch.optim.AdamW,
6 max_epochs = 3,
7 embeddings_storage_mode = 'none')
File ~/.local/lib/python3.8/site-packages/flair/trainers/trainer.py:195, in ModelTrainer.train(self, base_path, anneal_factor, patience, min_learning_rate, initial_extra_patience, anneal_with_restarts, learning_rate, decoder_learning_rate, mini_batch_size, eval_batch_size, mini_batch_chunk_size, max_epochs, optimizer, train_with_dev, train_with_test, main_evaluation_metric, monitor_test, monitor_train_sample, use_final_model_for_eval, gold_label_dictionary_for_eval, exclude_labels, sampler, shuffle, shuffle_first_epoch, embeddings_storage_mode, epoch, save_final_model, save_optimizer_state, save_model_each_k_epochs, create_file_logs, create_loss_file, write_weights, plugins, attach_default_scheduler, **kwargs)
184 for var in [
185 "self",
186 "anneal_factor",
(...)
192 "kwargs",
193 ]:
194 local_variables.pop(var)
--> 195 return self.train_custom(**local_variables, **kwargs)
File ~/.local/lib/python3.8/site-packages/flair/trainers/trainer.py:691, in ModelTrainer.train_custom(self, base_path, learning_rate, decoder_learning_rate, mini_batch_size, eval_batch_size, mini_batch_chunk_size, max_epochs, optimizer, train_with_dev, train_with_test, main_evaluation_metric, monitor_test, monitor_train_sample, use_final_model_for_eval, gold_label_dictionary_for_eval, exclude_labels, sampler, shuffle, shuffle_first_epoch, embeddings_storage_mode, epoch, save_final_model, save_optimizer_state, save_model_each_k_epochs, create_file_logs, create_loss_file, write_weights, plugins, **kwargs)
689 if save_best_model and current_epoch_has_best_model_so_far:
690 log.info("saving best model")
--> 691 self.model.save(base_path / "best-model.pt", checkpoint=save_optimizer_state)
693 # - SWAPlugin -> restores SGD weights from SWA
694 self.dispatch("after_training_loop")
File ~/.local/lib/python3.8/site-packages/flair/nn/model.py:105, in Model.save(self, model_file, checkpoint)
100 def save(self, model_file: Union[str, Path], checkpoint: bool = False):
101 """Saves the current model to the provided file.
102
103 :param model_file: the model file
104 """
--> 105 model_state = self._get_state_dict()
107 # write out a "model card" if one is set
108 if self.model_card is not None:
File ~/.local/lib/python3.8/site-packages/flair/models/sequence_tagger_model.py:589, in SequenceTagger._get_state_dict(self)
586 def _get_state_dict(self):
587 """Returns the state dictionary for this model."""
588 model_state = {
--> 589 **super()._get_state_dict(),
590 "embeddings": self.embeddings.save_embeddings(use_state_dict=False),
591 "hidden_size": self.hidden_size,
592 "tag_dictionary": self.label_dictionary,
593 "tag_format": self.tag_format,
594 "tag_type": self.tag_type,
595 "use_crf": self.use_crf,
596 "use_rnn": self.use_rnn,
597 "rnn_layers": self.rnn_layers,
598 "use_dropout": self.use_dropout,
599 "use_word_dropout": self.use_word_dropout,
600 "use_locked_dropout": self.use_locked_dropout,
601 "rnn_type": self.rnn_type,
602 "reproject_embeddings": self.reproject_embeddings,
603 "weight_dict": self.weight_dict,
604 "train_initial_hidden_state": self.train_initial_hidden_state,
605 }
607 return model_state
File ~/.local/lib/python3.8/site-packages/flair/nn/model.py:74, in Model._get_state_dict(self)
72 def _get_state_dict(self):
73 """Returns the state dictionary for this model."""
---> 74 state_dict = {"state_dict": self.state_dict()}
76 # Always include the name of the Model class for which the state dict holds
77 state_dict["cls"] = self.class.name
File /appli/anaconda/lib/python3.8/site-packages/torch/nn/modules/module.py:1259, in Module.state_dict(self, destination, prefix, keep_vars)
1257 for name, module in self._modules.items():
1258 if module is not None:
-> 1259 module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
1260 for hook in self._state_dict_hooks.values():
1261 hook_result = hook(self, destination, prefix, local_metadata)
File /appli/anaconda/lib/python3.8/site-packages/torch/nn/modules/module.py:1259, in Module.state_dict(self, destination, prefix, keep_vars)
1257 for name, module in self._modules.items():
1258 if module is not None:
-> 1259 module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
1260 for hook in self._state_dict_hooks.values():
1261 hook_result = hook(self, destination, prefix, local_metadata)
File ~/.local/lib/python3.8/site-packages/flair/embeddings/token.py:438, in WordEmbeddings.state_dict(self, destination, prefix, keep_vars, *args)
436 if list(self.modules()) == [self]:
437 self.embedding = self.embedding
--> 438 return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
TypeError: state_dict() got multiple values for argument 'destination'
To Reproduce
Expected behavior
2023-06-14 10:23:37,825 DEV : loss 0.07393791526556015 - f1-score (micro avg) 0.7315
2023-06-14 10:23:37,883 - 0 epochs without improvement
2023-06-14 10:23:37,884 - 0 epochs without improvement
2023-06-14 10:23:37,885 - 0 epochs without improvement
2023-06-14 10:23:37,885 saving best model
Logs and Stack traces
No response
Screenshots
No response
Additional Context
No response
Environment
:219: RuntimeWarning: scipy._lib.messagestream.MessageStream size changed, may indicate binary incompatibility. Expected 56 from C header, got 64 from PyObject
Versions:
Flair
0.12.2
Pytorch
1.9.1+cu111
Transformers
4.21.0.dev0
GPU
True
The text was updated successfully, but these errors were encountered: