Skip to content

Commit 24a9480

Browse files
Merge pull request openai#83 from devisasari/patch-1
fix typos
2 parents 0a36ab2 + d494742 commit 24a9480

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

techniques_to_improve_reliability.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -349,7 +349,7 @@ First, the authors add a 'halter' model that, after each inference step, is aske
349349
The halter models brings a couple of advantages:
350350

351351
- it can tell the selection-inference process to stop or keep going, as necessary.
352-
- if the process never halts, you'll get no answer, which is often preferrable to a hallucinated guess
352+
- if the process never halts, you'll get no answer, which is often preferable to a hallucinated guess
353353

354354
[![Faithful reasoning](images/faithful-reasoning_fig3.png)
355355
<br>Source: *Faithful Reasoning Using Large Language Models* by Antonia Creswell et al. (2022)](https://arxiv.org/abs/2208.14271)
@@ -432,7 +432,7 @@ The method is complicated, and works as follows:
432432

433433
- First, build a maieutic tree, where each node is a statement that could be true or false:
434434
- Start with a multiple-choice question or true/false statement (e.g. `War cannot have a tie`)
435-
- For each possible answer to the question, use the model to generate a correponding explanation (with a prompt like `War cannot have a tie? True, because`)
435+
- For each possible answer to the question, use the model to generate a corresponding explanation (with a prompt like `War cannot have a tie? True, because`)
436436
- Then, prompt the model with the question and the generated explanation, and ask it to produce the answer. If reversing the explanation (with a prefix like `It is wrong to say that {explanation}`) reverses the answer, then the explanation is considered 'logically integral.'
437437
- If an explanation is not logically integral, then repeat the above process recursively, with each explanation turned into a True or False question, and generate more explanations for each new question.
438438
- After all of the recursive explaining is done, you end up with a tree of explanations, where each leaf on the tree has the property that reversing the explanation reverses the model's answer.
@@ -505,7 +505,7 @@ In 2021, OpenAI researchers applied this technique to grade school math problems
505505

506506
#### Results
507507

508-
With a 175B GPT-3 model and 8,000 training examples, this technique substantially lifted gradeschool math accuracy from ~33% to ~55%.
508+
With a 175B GPT-3 model and 8,000 training examples, this technique substantially lifted grade school math accuracy from ~33% to ~55%.
509509

510510
[![Verifier results](images/verifiers_fig5.png)
511511
<br>Source: *Training Verifiers to Solve Math Word Problems* by Karl Cobbe et al. (2021)](https://arxiv.org/abs/2110.14168)
@@ -571,4 +571,4 @@ In the future, expect better models and better techniques to be published. Even
571571
| On long reasoning problems, you can improve step-by-step reasoning by splitting the problem into pieces to solve incrementally | [Least-to-most Prompting Enables Complex Reasoning in Large Language Models](https://arxiv.org/abs/2205.10625) | 2022 May |
572572
| You can have the model analyze both good and bogus explanations to figure out which set of explanations are most consistent | [Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations](https://arxiv.org/abs/2205.11822) | 2022 May |
573573
| You can think about these techniques in terms of probabilistic programming, where systems comprise unreliable components | [Language Model Cascades](https://arxiv.org/abs/2207.10342) | 2022 Jul |
574-
| You can eliminate hallucination with sentence label manipulation, and you can reduce wrong answers with a 'halter' prompt | [Faithful Reasoning Using Large Language Models](https://arxiv.org/abs/2208.14271) | 2022 Aug |
574+
| You can eliminate hallucination with sentence label manipulation, and you can reduce wrong answers with a 'halter' prompt | [Faithful Reasoning Using Large Language Models](https://arxiv.org/abs/2208.14271) | 2022 Aug |

0 commit comments

Comments
 (0)