|
| 1 | +submodule (stdlib_linalg) stdlib_linalg_kronecker |
| 2 | + |
| 3 | + implicit none |
| 4 | + |
| 5 | +contains |
| 6 | + |
| 7 | + pure module function kronecker_product_rsp(A, B) result(C) |
| 8 | + real(sp), intent(in) :: A(:,:), B(:,:) |
| 9 | + real(sp) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 10 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 11 | + |
| 12 | + maxM1 = size(A, dim=1) |
| 13 | + maxN1 = size(A, dim=2) |
| 14 | + maxM2 = size(B, dim=1) |
| 15 | + maxN2 = size(B, dim=2) |
| 16 | + |
| 17 | + |
| 18 | + do n1 = 1, maxN1 |
| 19 | + do m1 = 1, maxM1 |
| 20 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 21 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 22 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 23 | + end do |
| 24 | + end do |
| 25 | + end function kronecker_product_rsp |
| 26 | + pure module function kronecker_product_rdp(A, B) result(C) |
| 27 | + real(dp), intent(in) :: A(:,:), B(:,:) |
| 28 | + real(dp) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 29 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 30 | + |
| 31 | + maxM1 = size(A, dim=1) |
| 32 | + maxN1 = size(A, dim=2) |
| 33 | + maxM2 = size(B, dim=1) |
| 34 | + maxN2 = size(B, dim=2) |
| 35 | + |
| 36 | + |
| 37 | + do n1 = 1, maxN1 |
| 38 | + do m1 = 1, maxM1 |
| 39 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 40 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 41 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 42 | + end do |
| 43 | + end do |
| 44 | + end function kronecker_product_rdp |
| 45 | + pure module function kronecker_product_csp(A, B) result(C) |
| 46 | + complex(sp), intent(in) :: A(:,:), B(:,:) |
| 47 | + complex(sp) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 48 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 49 | + |
| 50 | + maxM1 = size(A, dim=1) |
| 51 | + maxN1 = size(A, dim=2) |
| 52 | + maxM2 = size(B, dim=1) |
| 53 | + maxN2 = size(B, dim=2) |
| 54 | + |
| 55 | + |
| 56 | + do n1 = 1, maxN1 |
| 57 | + do m1 = 1, maxM1 |
| 58 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 59 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 60 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 61 | + end do |
| 62 | + end do |
| 63 | + end function kronecker_product_csp |
| 64 | + pure module function kronecker_product_cdp(A, B) result(C) |
| 65 | + complex(dp), intent(in) :: A(:,:), B(:,:) |
| 66 | + complex(dp) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 67 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 68 | + |
| 69 | + maxM1 = size(A, dim=1) |
| 70 | + maxN1 = size(A, dim=2) |
| 71 | + maxM2 = size(B, dim=1) |
| 72 | + maxN2 = size(B, dim=2) |
| 73 | + |
| 74 | + |
| 75 | + do n1 = 1, maxN1 |
| 76 | + do m1 = 1, maxM1 |
| 77 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 78 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 79 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 80 | + end do |
| 81 | + end do |
| 82 | + end function kronecker_product_cdp |
| 83 | + pure module function kronecker_product_iint8(A, B) result(C) |
| 84 | + integer(int8), intent(in) :: A(:,:), B(:,:) |
| 85 | + integer(int8) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 86 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 87 | + |
| 88 | + maxM1 = size(A, dim=1) |
| 89 | + maxN1 = size(A, dim=2) |
| 90 | + maxM2 = size(B, dim=1) |
| 91 | + maxN2 = size(B, dim=2) |
| 92 | + |
| 93 | + |
| 94 | + do n1 = 1, maxN1 |
| 95 | + do m1 = 1, maxM1 |
| 96 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 97 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 98 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 99 | + end do |
| 100 | + end do |
| 101 | + end function kronecker_product_iint8 |
| 102 | + pure module function kronecker_product_iint16(A, B) result(C) |
| 103 | + integer(int16), intent(in) :: A(:,:), B(:,:) |
| 104 | + integer(int16) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 105 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 106 | + |
| 107 | + maxM1 = size(A, dim=1) |
| 108 | + maxN1 = size(A, dim=2) |
| 109 | + maxM2 = size(B, dim=1) |
| 110 | + maxN2 = size(B, dim=2) |
| 111 | + |
| 112 | + |
| 113 | + do n1 = 1, maxN1 |
| 114 | + do m1 = 1, maxM1 |
| 115 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 116 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 117 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 118 | + end do |
| 119 | + end do |
| 120 | + end function kronecker_product_iint16 |
| 121 | + pure module function kronecker_product_iint32(A, B) result(C) |
| 122 | + integer(int32), intent(in) :: A(:,:), B(:,:) |
| 123 | + integer(int32) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 124 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 125 | + |
| 126 | + maxM1 = size(A, dim=1) |
| 127 | + maxN1 = size(A, dim=2) |
| 128 | + maxM2 = size(B, dim=1) |
| 129 | + maxN2 = size(B, dim=2) |
| 130 | + |
| 131 | + |
| 132 | + do n1 = 1, maxN1 |
| 133 | + do m1 = 1, maxM1 |
| 134 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 135 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 136 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 137 | + end do |
| 138 | + end do |
| 139 | + end function kronecker_product_iint32 |
| 140 | + pure module function kronecker_product_iint64(A, B) result(C) |
| 141 | + integer(int64), intent(in) :: A(:,:), B(:,:) |
| 142 | + integer(int64) :: C(size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2)) |
| 143 | + integer :: m1, n1, maxM1, maxN1, maxM2, maxN2 |
| 144 | + |
| 145 | + maxM1 = size(A, dim=1) |
| 146 | + maxN1 = size(A, dim=2) |
| 147 | + maxM2 = size(B, dim=1) |
| 148 | + maxN2 = size(B, dim=2) |
| 149 | + |
| 150 | + |
| 151 | + do n1 = 1, maxN1 |
| 152 | + do m1 = 1, maxM1 |
| 153 | + ! We use the Wikipedia convention for ordering of the matrix elements |
| 154 | + ! https://en.wikipedia.org/wiki/Kronecker_product |
| 155 | + C((m1-1)*maxM2+1:m1*maxM2, (n1-1)*maxN2+1:n1*maxN2) = A(m1, n1) * B(:,:) |
| 156 | + end do |
| 157 | + end do |
| 158 | + end function kronecker_product_iint64 |
| 159 | +end submodule stdlib_linalg_kronecker |
0 commit comments