|
| 1 | +/* LTO serialization for RISC-V APEX intrinsics. |
| 2 | + Copyright (C) 2025 Free Software Foundation, Inc. |
| 3 | +
|
| 4 | +This file is part of GCC. |
| 5 | +
|
| 6 | +GCC is free software; you can redistribute it and/or modify it under |
| 7 | +the terms of the GNU General Public License as published by the Free |
| 8 | +Software Foundation; either version 3, or (at your option) any later |
| 9 | +version. |
| 10 | +
|
| 11 | +GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | +WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | +for more details. |
| 15 | +
|
| 16 | +You should have received a copy of the GNU General Public License |
| 17 | +along with GCC; see the file COPYING3. If not see |
| 18 | +<http://www.gnu.org/licenses/>. */ |
| 19 | + |
| 20 | +/* RISC-V APEX (ARC Processor Extension) intrinsics are unique in GCC |
| 21 | + because they are registered dynamically at compile-time via #pragma intrinsic |
| 22 | + directives, rather than being statically defined like normal target builtins. |
| 23 | +
|
| 24 | + This creates a challenge for LTO (Link Time Optimization): when compiling |
| 25 | + with -flto, each translation unit may register different APEX intrinsics via |
| 26 | + pragmas. During the link-time optimization phase, all these intrinsic |
| 27 | + definitions must be preserved and made available for code generation. |
| 28 | +
|
| 29 | + This file implements LTO serialization support for APEX intrinsics by: |
| 30 | +
|
| 31 | + 1. Writing Phase (produce_asm_for_decls): |
| 32 | + - Iterates through all registered APEX intrinsics |
| 33 | + - Serializes their metadata (name, mnemonic, opcode, instruction formats) |
| 34 | + - Writes to a dedicated .gnu.lto_riscv_apex section in object files |
| 35 | +
|
| 36 | + 2. Reading Phase (read_cgraph_and_symbols): |
| 37 | + - Reads .gnu.lto_riscv_apex sections from all input object files |
| 38 | + - Reconstructs and re-registers all APEX intrinsics |
| 39 | + - Makes them available for optimization and code generation |
| 40 | +
|
| 41 | + Without this support, LTO would lose APEX intrinsic definitions, causing |
| 42 | + unavailable intrinsics errors during link-time optimization. */ |
| 43 | + |
| 44 | +#include "config.h" |
| 45 | +#include "system.h" |
| 46 | +#include "coretypes.h" |
| 47 | +#include "backend.h" |
| 48 | +#include "tree.h" |
| 49 | +#include "gimple.h" |
| 50 | +#include "cgraph.h" |
| 51 | +#include "lto-streamer.h" |
| 52 | +#include "ipa-utils.h" |
| 53 | +#include "data-streamer.h" |
| 54 | +#include "stringpool.h" |
| 55 | +#include "attribs.h" |
| 56 | + |
| 57 | +/* Declarations from riscv-builtins.cc for accessing |
| 58 | + APEX builtin information. */ |
| 59 | +extern int arcv_apex_get_builtin_count (void); |
| 60 | +extern void arcv_apex_get_builtin_info (int, const char **, const char **, |
| 61 | + unsigned int *, unsigned int *); |
| 62 | +extern void arcv_apex_lto_register_builtin (const char *, const char *, |
| 63 | + unsigned int, unsigned int, bool, |
| 64 | + tree); |
| 65 | +extern const char *arcv_apex_get_fn_name (unsigned int); |
| 66 | + |
| 67 | +/* Write RISC-V APEX intrinsic information to the LTO bytecode stream. |
| 68 | +
|
| 69 | + This function is called during the compilation phase when producing LTO |
| 70 | + bytecode. It serializes all APEX intrinsics that were registered via |
| 71 | + #pragma directives in the current translation unit. |
| 72 | +
|
| 73 | + The serialization format for each intrinsic is: |
| 74 | + - Function name length (uhwi) |
| 75 | + - Function name characters |
| 76 | + - Instruction name length (uhwi) |
| 77 | + - Instruction name characters |
| 78 | + - Opcode (uhwi) |
| 79 | + - Instruction format flags (uhwi) */ |
| 80 | + |
| 81 | +void |
| 82 | +arcv_apex_lto_write_section (void) |
| 83 | +{ |
| 84 | + /* Get the number of registered APEX builtins in this compilation unit. */ |
| 85 | + int apex_count = arcv_apex_get_builtin_count (); |
| 86 | + |
| 87 | + /* If no APEX builtins were registered via pragmas, skip section creation. |
| 88 | + This is common for translation units that don't use APEX intrinsics. */ |
| 89 | + if (apex_count == 0) |
| 90 | + return; |
| 91 | + |
| 92 | + /* Collect indices of intrinsics that are actually used and not optimized |
| 93 | + away. Use an auto_vec to avoid manual memory management. */ |
| 94 | + auto_vec<int> used_indices; |
| 95 | + for (int i = 0; i < apex_count; i++) |
| 96 | + { |
| 97 | + const char *fn_name = arcv_apex_get_fn_name (i); |
| 98 | + gcc_assert (fn_name); |
| 99 | + |
| 100 | + /* Check if the intrinsic is still referenced in the program. */ |
| 101 | + symtab_node *snode = symtab_node::get_for_asmname ( |
| 102 | + get_identifier (fn_name)); |
| 103 | + |
| 104 | + /* Only keep intrinsics that exist and are actually used. |
| 105 | + Check if the symbol is referred to anywhere in the program. */ |
| 106 | + if (snode && snode->referred_to_p ()) |
| 107 | + used_indices.safe_push (i); |
| 108 | + } |
| 109 | + |
| 110 | + /* If all intrinsics were optimized away, skip section creation. */ |
| 111 | + if (used_indices.is_empty ()) |
| 112 | + return; |
| 113 | + |
| 114 | + /* Create a new LTO section for APEX intrinsics. */ |
| 115 | + struct lto_simple_output_block *ob |
| 116 | + = lto_create_simple_output_block (LTO_section_riscv_apex); |
| 117 | + |
| 118 | + if (!ob) |
| 119 | + return; |
| 120 | + |
| 121 | + /* Write the number of used APEX builtins so the reader knows |
| 122 | + how many to expect. */ |
| 123 | + streamer_write_uhwi_stream (ob->main_stream, used_indices.length ()); |
| 124 | + |
| 125 | + /* Serialize only the intrinsics that are still used. */ |
| 126 | + for (unsigned int idx = 0; idx < used_indices.length (); idx++) |
| 127 | + { |
| 128 | + int i = used_indices[idx]; |
| 129 | + const char *fn_name = NULL; |
| 130 | + const char *insn_name = NULL; |
| 131 | + unsigned int opcode = 0; |
| 132 | + unsigned int insn_formats = 0; |
| 133 | + |
| 134 | + /* Get builtin information from the registry. */ |
| 135 | + arcv_apex_get_builtin_info (i, &fn_name, &insn_name, |
| 136 | + &opcode, &insn_formats); |
| 137 | + |
| 138 | + /* Function and instruction names must exist. */ |
| 139 | + gcc_assert (fn_name && insn_name); |
| 140 | + |
| 141 | + /* Write function name as length-prefixed string. */ |
| 142 | + size_t name_len = strlen (fn_name); |
| 143 | + streamer_write_uhwi_stream (ob->main_stream, name_len); |
| 144 | + for (size_t j = 0; j < name_len; j++) |
| 145 | + streamer_write_char_stream (ob->main_stream, fn_name[j]); |
| 146 | + |
| 147 | + /* Write instruction name as length-prefixed string. */ |
| 148 | + size_t insn_name_len = strlen (insn_name); |
| 149 | + streamer_write_uhwi_stream (ob->main_stream, insn_name_len); |
| 150 | + for (size_t j = 0; j < insn_name_len; j++) |
| 151 | + streamer_write_char_stream (ob->main_stream, insn_name[j]); |
| 152 | + |
| 153 | + /* Write opcode value. */ |
| 154 | + streamer_write_uhwi_stream (ob->main_stream, opcode); |
| 155 | + |
| 156 | + /* Write instruction format flags. */ |
| 157 | + streamer_write_uhwi_stream (ob->main_stream, insn_formats); |
| 158 | + } |
| 159 | + |
| 160 | + lto_destroy_simple_output_block (ob); |
| 161 | +} |
| 162 | + |
| 163 | +/* Read RISC-V APEX intrinsic information from the LTO bytecode stream. |
| 164 | +
|
| 165 | + This function is called during the link-time optimization phase. It reads |
| 166 | + the .gnu.lto_riscv_apex sections from all input object files and |
| 167 | + re-registers all APEX intrinsics so they are available for optimization |
| 168 | + and code generation in the LTRANS phase. |
| 169 | +
|
| 170 | + The function iterates over all input files, reads their APEX sections, |
| 171 | + and re-registers each intrinsic by calling riscv_register_apex_builtin. */ |
| 172 | + |
| 173 | +void |
| 174 | +arcv_apex_lto_read_section (void) |
| 175 | +{ |
| 176 | + struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data (); |
| 177 | + struct lto_file_decl_data *file_data; |
| 178 | + unsigned int j = 0; |
| 179 | + |
| 180 | + /* Process each input file's APEX section. */ |
| 181 | + while ((file_data = file_data_vec[j++])) |
| 182 | + { |
| 183 | + const char *data; |
| 184 | + size_t len; |
| 185 | + class lto_input_block *ib |
| 186 | + = lto_create_simple_input_block (file_data, LTO_section_riscv_apex, |
| 187 | + &data, &len); |
| 188 | + |
| 189 | + /* Skip files that don't have an APEX section |
| 190 | + (did not use APEX intrinsics). */ |
| 191 | + if (!ib) |
| 192 | + continue; |
| 193 | + |
| 194 | + /* Read the count of APEX builtins in this file. */ |
| 195 | + unsigned int apex_count = streamer_read_uhwi (ib); |
| 196 | + unsigned int registered_count = 0; |
| 197 | + |
| 198 | + /* Deserialize each APEX intrinsic. */ |
| 199 | + for (unsigned int i = 0; i < apex_count; i++) |
| 200 | + { |
| 201 | + /* Read function name. */ |
| 202 | + unsigned int fn_name_len = streamer_read_uhwi (ib); |
| 203 | + char *fn_name = XNEWVEC (char, fn_name_len + 1); |
| 204 | + for (unsigned int k = 0; k < fn_name_len; k++) |
| 205 | + fn_name[k] = streamer_read_uchar (ib); |
| 206 | + fn_name[fn_name_len] = '\0'; |
| 207 | + |
| 208 | + /* Read instruction name. */ |
| 209 | + unsigned int insn_name_len = streamer_read_uhwi (ib); |
| 210 | + char *insn_name = XNEWVEC (char, insn_name_len + 1); |
| 211 | + for (unsigned int k = 0; k < insn_name_len; k++) |
| 212 | + insn_name[k] = streamer_read_uchar (ib); |
| 213 | + insn_name[insn_name_len] = '\0'; |
| 214 | + |
| 215 | + /* Read opcode and instruction format flags. */ |
| 216 | + unsigned int opcode = streamer_read_uhwi (ib); |
| 217 | + unsigned int insn_formats = streamer_read_uhwi (ib); |
| 218 | + |
| 219 | + /* Look up the function declaration in the merged symbol table. |
| 220 | + During LTO, all function declarations from all compilation units |
| 221 | + are merged into a single global symbol table. */ |
| 222 | + symtab_node *snode = symtab_node::get_for_asmname ( |
| 223 | + get_identifier (fn_name)); |
| 224 | + |
| 225 | + cgraph_node *node = dyn_cast<cgraph_node *> (snode); |
| 226 | + if (node) |
| 227 | + { |
| 228 | + tree fndecl = node->decl; |
| 229 | + if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL) |
| 230 | + { |
| 231 | + /* Re-register the intrinsic so it's available for code generation. |
| 232 | + The !flag_wpa parameter controls whether to print .extInstruction |
| 233 | + directives (only needed in final LTRANS phase, not WPA phase). */ |
| 234 | + arcv_apex_lto_register_builtin (fn_name, insn_name, opcode, |
| 235 | + insn_formats, !flag_wpa, fndecl); |
| 236 | + registered_count++; |
| 237 | + } |
| 238 | + } |
| 239 | + |
| 240 | + /* Free allocated memory. */ |
| 241 | + XDELETEVEC (fn_name); |
| 242 | + XDELETEVEC (insn_name); |
| 243 | + } |
| 244 | + |
| 245 | + /* Verify we successfully re-registered all APEX intrinsics |
| 246 | + from the section. If this fails, the LTO section is |
| 247 | + likely corrupted. */ |
| 248 | + gcc_assert (registered_count == apex_count); |
| 249 | + |
| 250 | + lto_destroy_simple_input_block (file_data, LTO_section_riscv_apex, |
| 251 | + ib, data, len); |
| 252 | + } |
| 253 | +} |
| 254 | + |
0 commit comments