Skip to content

Latest commit

 

History

History
33 lines (21 loc) · 705 Bytes

README.md

File metadata and controls

33 lines (21 loc) · 705 Bytes

Deep Q-Learning for Event Summarization

Repo currently has 3 folders

Code
Paper
Presentation

This is the repository for our {Francisco Javier Arceo, Chris Kedzie} implementation of our Deep Q-Network using a Long Short Term Memory (DQN-LSTM) for Event Summarization.

To run the code simply enter in the command line:

th Code/runModelProd.lua --model lstm

The relevant code files in the /Code folder are

  1. Utils/build_data.py
  2. utils.lua
  3. utilsNN.lua
  4. runModelProd.lua
  5. runModel.lua

The files in the /Paper folder are related to the TeX document to create the paper.

License

MIT

Notebooks

  1. Run FinalProcessing.ipynb
  2. Pytorch DQN Summarization.ipynb