-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathinterfaces.py
409 lines (337 loc) · 12.1 KB
/
interfaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#Copyright (C) 2017 Paolo Galeone <[email protected]>
#
#This Source Code Form is subject to the terms of the Mozilla Public
#License, v. 2.0. If a copy of the MPL was not distributed with this
#file, you can obtain one at http://mozilla.org/MPL/2.0/.
#Exhibit B is not attached; this software is compatible with the
#licenses expressed under Section 1.12 of the MPL v2.
"""Define the model interfaces"""
from abc import ABCMeta, abstractmethod, abstractproperty
# Evaluators
from ..evaluators.AutoencoderEvaluator import AutoencoderEvaluator
from ..evaluators.ClassifierEvaluator import ClassifierEvaluator
from ..evaluators.DetectorEvaluator import DetectorEvaluator
from ..evaluators.RegressorEvaluator import RegressorEvaluator
class Autoencoder(object, metaclass=ABCMeta):
"""Autoencoder is the interface that classifiers must implement"""
def __init__(self):
self._info = {}
self._seed = None
self._evaluator = None
@abstractmethod
def get(self, inputs, num_classes, train_phase=False, l2_penalty=0.0):
""" define the model with its inputs.
Use this function to define the model in training and when exporting the model
in the protobuf format.
Args:
inputs: model input
num_classes: number of classes to predict. If the model doesn't use it,
just pass any value.
train_phase: set it to True when defining the model, during train
l2_penalty: float value, weight decay (l2) penalty
Returns:
is_training_: tf.bool placeholder enable/disable training ops at run time
predictions: the model output
"""
@abstractmethod
def loss(self, predictions, real_values):
"""Return the loss operation between predictions and real_values
Args:
predictions: predicted values
labels: real_values
Returns:
Loss tensor of type float.
"""
@property
def name(self):
"""Returns the name of the model"""
return self.__class__.__name__
@property
def info(self):
"""Returns the inforation about the trained model"""
return self._info
@info.setter
def info(self, info):
"""Save the training info
Args:
info: dict of training info
"""
self._info = info
@property
def seed(self):
"""Returns the seed used for weight initialization"""
return self._seed
@seed.setter
def seed(self, seed):
"""Set the seed to use for weight initialization
Args:
seed
"""
self._seed = seed
@property
def evaluator(self):
"""Returns the evaluator associated to the model"""
if self._evaluator is None:
obj = AutoencoderEvaluator()
obj.model = self
self._evaluator = obj
return self._evaluator
class Classifier(object, metaclass=ABCMeta):
"""Classifier is the interface that classifiers must implement"""
def __init__(self):
self._info = {}
self._seed = None
self._evaluator = None
@abstractmethod
def get(self, inputs, num_classes, train_phase=False, l2_penalty=0.0):
"""Define the model with its inputs.
Use this function to define the model in training and when exporting the model
in the protobuf format.
Args:
inputs: model input
num_classes: number of classes to predict
train_phase: set it to True when defining the model, during train
l2_penalty: float value, weight decay (l2) penalty
Returns:
is_training_: tf.bool placeholder enable/disable training ops at run time
logits: the model output
"""
@abstractmethod
def loss(self, logits, labels):
"""Return the loss operation between logits and labels
Args:
logits: Logits from get().
labels: Labels from train_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
@property
def name(self):
"""Returns the name of the model"""
return self.__class__.__name__
@property
def info(self):
"""Returns the inforation about the trained model"""
return self._info
@info.setter
def info(self, info):
"""Save the training info
Args:
info: dict of training info
"""
self._info = info
@property
def seed(self):
"""Returns the seed used for weight initialization"""
return self._seed
@seed.setter
def seed(self, seed):
"""Set the seed to use for weight initialization
Args:
seed
"""
self._seed = seed
@property
def evaluator(self):
"""Returns the evaluator associated to the model"""
if self._evaluator is None:
obj = ClassifierEvaluator()
obj.model = self
self._evaluator = obj
return self._evaluator
class Detector(object, metaclass=ABCMeta):
"""Detector is the interface that detectors must implement"""
def __init__(self):
self._info = {}
self._seed = None
self._evaluator = None
@abstractmethod
def get(self, inputs, num_classes, train_phase=False, l2_penalty=0.0):
""" define the model with its inputs.
Use this function to define the model in training and when exporting the model
in the protobuf format.
Args:
inputs: model input, tensor with batch_size elements
num_classes: number of classes to predict. If the model doesn't use it,
just pass any value.
train_phase: set it to True when defining the model, during train
l2_penalty: float value, weight decay (l2) penalty
Returns:
is_training_: tf.bool placeholder enable/disable training ops at run time
logits: the unscaled prediction for a class specific detector
bboxes: the predicted coordinates for every detected object in the input image
this must have the same number of rows of logits
"""
@abstractmethod
def loss(self, label_relations, bboxes_relations):
"""Return the loss operation.
Args:
label_relations: a tuple with 2 elements, usually the pair
(labels, logits), each one a tensor of batch_size elements
bboxes_relations: a tuple with 2 elements, usually the pair
(coordinates, bboxes) where coordinates are the
ground truth coordinates ad bboxes the predicted one
Returns:
Loss tensor of type float.
"""
@property
def name(self):
"""Returns the name of the model"""
return self.__class__.__name__
@property
def info(self):
"""Returns the inforation about the trained model"""
return self._info
@info.setter
def info(self, info):
"""Save the training info
Args:
info: dict of training info
"""
self._info = info
@property
def seed(self):
"""Returns the seed used for weight initialization"""
return self._seed
@seed.setter
def seed(self, seed):
"""Set the seed to use for weight initialization
Args:
seed
"""
self._seed = seed
@property
def evaluator(self):
"""Returns the evaluator associated to the model"""
if self._evaluator is None:
obj = DetectorEvaluator()
obj.model = self
self._evaluator = obj
return self._evaluator
class Regressor(object, metaclass=ABCMeta):
"""Regressor is the interface that regressors must implement"""
def __init__(self):
self._info = {}
self._seed = None
self._evaluator = None
@abstractmethod
def get(self, inputs, num_classes, train_phase=False, l2_penalty=0.0):
""" define the model with its inputs.
Use this function to define the model in training and when exporting the model
in the protobuf format.
Args:
inputs: model input
num_classes: number of classes to predict. If the model doesn't use it,
just pass any value.
train_phase: set it to True when defining the model, during train
l2_penalty: float value, weight decay (l2) penalty
Returns:
is_training_: tf.bool placeholder enable/disable training ops at run time
predictions: the model output
"""
@abstractmethod
def loss(self, predictions, labels):
"""Return the loss operation between predictions and labels
Args:
predictions: Predictions from get().
labels: Labels from train_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
@property
def name(self):
"""Returns the name of the model"""
return self.__class__.__name__
@property
def info(self):
"""Returns the inforation about the trained model"""
return self._info
@info.setter
def info(self, info):
"""Save the training info
Args:
info: dict of training info
"""
self._info = info
@property
def seed(self):
"""Returns the seed used for weight initialization"""
return self._seed
@seed.setter
def seed(self, seed):
"""Set the seed to use for weight initialization
Args:
seed
"""
self._seed = seed
@property
def evaluator(self):
"""Returns the evaluator associated to the model"""
if self._evaluator is None:
obj = RegressorEvaluator()
obj.model = self
self._evaluator = obj
return self._evaluator
class Custom(object, metaclass=ABCMeta):
"""Custom is the interface that custom models must implement"""
def __init__(self):
self._info = {}
self._seed = None
self._evaluator = None
@abstractmethod
def get(self, inputs, num_classes, **kwargs):
""" define the model with its inputs.
Use this function to define the model in training and when exporting the model
in the protobuf format.
Args:
inputs: model input
num_classes: number of classes to predict. If the model doesn't use it,
just pass any value.
kwargs:
train_phase: set it to True when defining the model, during train
l2_penalty: float value, weight decay (l2) penalty
Returns:
is_training_: tf.bool placeholder enable/disable training ops at run time
predictions: the model output
"""
@abstractmethod
def loss(self, predictions, real_values):
"""Return the loss operation between predictions and real_values
Args:
predictions: a list of predicted values eg [predicted_labels_batch, ...]
labels: a list of real_values, eg [ labels_batch, attributeA_batch, ...]
Returns:
Loss tensor of type float.
"""
@abstractproperty
def evaluator(self):
"""Returns the evaluator associated to the model"""
# Below implemented properties
@property
def name(self):
"""Returns the name of the model"""
return self.__class__.__name__
@property
def info(self):
"""Returns the inforation about the trained model"""
return self._info
@info.setter
def info(self, info):
"""Save the training info
Args:
info: dict of training info
"""
self._info = info
@property
def seed(self):
"""Returns the seed used for weight initialization"""
return self._seed
@seed.setter
def seed(self, seed):
"""Set the seed to use for weight initialization
Args:
seed
"""
self._seed = seed