diff --git a/src/ggml-cuda/clamp.cu b/src/ggml-cuda/clamp.cu index 611db8864..fe415e7f7 100644 --- a/src/ggml-cuda/clamp.cu +++ b/src/ggml-cuda/clamp.cu @@ -1,20 +1,24 @@ #include "clamp.cuh" +static __device__ __forceinline__ float op_clamp(float x, float min, float max) { + return fminf(fmaxf(x, min), max); +} + template -static __global__ void op_clamp(const T * x, T * dst, const T min, const T max, const int k) { +static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } - dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]); + dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max); } template static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; - op_clamp<<>>(x, dst, min, max, k); + op_clamp_kernel<<>>(x, dst, min, max, k); } diff --git a/src/ggml-cuda/unary.cu b/src/ggml-cuda/unary.cu index 9b0eaaccd..ec5773e01 100644 --- a/src/ggml-cuda/unary.cu +++ b/src/ggml-cuda/unary.cu @@ -1,447 +1,213 @@ #include "unary.cuh" -template -static __global__ void op_abs(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - - dst[i] = fabsf(x[i]); +static __device__ __forceinline__ float op_abs(float x) { + return fabsf(x); } -template -static __global__ void op_sgn(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - - dst[i] = (T)(x[i] > (T)0.f ? 1.f : ((x[i] < (T)0.f ? -1.f : 0.f))); +static __device__ __forceinline__ float op_sgn(float x) { + return (x > 0.f ? 1.f : ((x < 0.f ? -1.f : 0.f))); } -template -static __global__ void op_neg(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - - dst[i] = -x[i]; +static __device__ __forceinline__ float op_neg(float x) { + return -x; } -template -static __global__ void op_step(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - - dst[i] = x[i] > (T)0.0f; +static __device__ __forceinline__ float op_step(float x) { + return x > 0.0f; } -template -static __global__ void op_gelu(const T * x, T * dst, const int k) { - const T GELU_COEF_A = 0.044715f; - const T SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } +static __device__ __forceinline__ float op_gelu(float x) { + const float GELU_COEF_A = 0.044715f; + const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; - T xi = x[i]; - dst[i] = (T)0.5f*xi*((T)1.0f + (T)tanhf(SQRT_2_OVER_PI*xi*((T)1.0f + GELU_COEF_A*xi*xi))); + return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } -template -static __global__ void op_gelu_quick(const T * x, T * dst, int k) { - const T GELU_QUICK_COEF = -1.702f; - const int i = blockDim.x*blockIdx.x + threadIdx.x; - if (i >= k) { - return; - } - dst[i] = x[i] * ((T)1.0f / ((T)1.0f + (T)expf(GELU_QUICK_COEF * x[i]))); -} +static __device__ __forceinline__ float op_gelu_quick(float x) { + const float GELU_QUICK_COEF = -1.702f; -template -static __global__ void op_silu(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = x[i] / ((T)1.0f + (T)expf(-x[i])); + return x * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x))); } -template -static __global__ void op_silu_back( - const T * grad, const T * xf, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - - const T xfi = xf[i]; - const T s = (T)1.0f / ((T)1.0f + (T)expf(-xfi)); - dst[i] = grad[i] * s * ((T)1.0f + xfi * ((T)1.0f - s)); +static __device__ __forceinline__ float op_silu(float x) { + return x / (1.0f + expf(-x)); } -template -static __global__ void op_tanh(const T * x, T * dst, int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - if (i >= k) { - return; - } - dst[i] = tanhf(x[i]); +static __device__ __forceinline__ float op_tanh(float x) { + return tanhf(x); } -template -static __global__ void op_relu(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = fmaxf(x[i], 0); +static __device__ __forceinline__ float op_relu(float x) { + return fmaxf(x, 0); } -template -static __global__ void op_sigmoid(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = (T)1.0f / ((T)1.0f + (T)expf(-x[i])); +static __device__ __forceinline__ float op_sigmoid(float x) { + return 1.0f / (1.0f + expf(-x)); } -template -static __global__ void op_hardsigmoid(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f)); +static __device__ __forceinline__ float op_hardsigmoid(float x) { + return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } -template -static __global__ void op_hardswish(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = x[i] * (T)fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f)); +static __device__ __forceinline__ float op_hardswish(float x) { + return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } -template -static __global__ void op_exp(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = expf(x[i]); +static __device__ __forceinline__ float op_exp(float x) { + return expf(x); } -template -static __global__ void op_leaky_relu(const T * x, T * dst, const int k, const float negative_slope) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - if (i >= k) { - return; - } - dst[i] = (T)fmaxf(x[i], 0) + (T)fminf(x[i], 0.0f) * (T)negative_slope; +static __device__ __forceinline__ float op_sqr(float x) { + return x * x; } -template -static __global__ void op_sqr(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = x[i] * x[i]; +static __device__ __forceinline__ float op_sqrt(float x) { + return sqrtf(x); } -template -static __global__ void op_sqrt(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = sqrtf(x[i]); +static __device__ __forceinline__ float op_sin(float x) { + return sinf(x); } -template -static __global__ void op_sin(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = sinf(x[i]); +static __device__ __forceinline__ float op_cos(float x) { + return cosf(x); } -template -static __global__ void op_cos(const T * x, T * dst, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - if (i >= k) { - return; - } - dst[i] = cosf(x[i]); +static __device__ __forceinline__ float op_log(float x) { + return logf(x); } -template -static __global__ void op_log(const T * x, T * dst, const int k) { +template +static __global__ void unary_op_kernel(const T * x, T * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } - dst[i] = logf(x[i]); -} -template -static void abs_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE; - op_abs<<>>(x, dst, k); + dst[i] = (T)op((float)x[i]); } -template -static void sgn_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { +template +static void unary_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE; - op_sgn<<>>(x, dst, k); + unary_op_kernel<<>>(x, dst, k); } -template -static void neg_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE; - op_neg<<>>(x, dst, k); -} +template +void ggml_cuda_op_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const void * src0_d = src0->data; + void * dst_d = dst->data; + cudaStream_t stream = ctx.stream(); -template -static void step_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE; - op_step<<>>(x, dst, k); -} + GGML_ASSERT(ggml_is_contiguous(src0)); -template -static void gelu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; - op_gelu<<>>(x, dst, k); -} + GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); + GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == dst->type); -template -static void gelu_quick_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; - op_gelu_quick<<>>(x, dst, k); + if (src0->type == GGML_TYPE_F16) { + unary_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); + } else { + unary_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); + } } -template -static void silu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; - op_silu<<>>(x, dst, k); +void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; - op_silu_back<<>>(grad, x, dst, k); +void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void tanh_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE; - op_tanh<<>>(x, dst, k); +void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void relu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; - op_relu<<>>(x, dst, k); +void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void sigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE; - op_sigmoid<<>>(x, dst, k); +void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void hardsigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE; - op_hardsigmoid<<>>(x, dst, k); +void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void hardswish_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE; - op_hardswish<<>>(x, dst, k); +void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void exp_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE; - op_exp<<>>(x, dst, k); +void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) { - const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; - op_leaky_relu<<>>(x, dst, k, negative_slope); +void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void sqr_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE; - op_sqr<<>>(x, dst, k); +void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void sqrt_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE; - op_sqrt<<>>(x, dst, k); +void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void sin_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE; - op_sin<<>>(x, dst, k); +void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void cos_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE; - op_cos<<>>(x, dst, k); +void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -template -static void log_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE; - op_log<<>>(x, dst, k); +void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - abs_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - abs_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - sgn_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - sgn_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - neg_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - neg_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - step_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - step_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_unary(ctx, dst); } -void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); +/* silu_back */ - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - gelu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - gelu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +static __device__ __forceinline__ float op_silu_back(float grad, float x) { + const float s = 1.0f / (1.0f + expf(-x)); + return grad * s * (1.0f + x * (1.0f - s)); } -void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); +template +static __global__ void silu_back_kernel(const T * grad, const T * xf, T * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; - GGML_ASSERT(ggml_is_contiguous(src0)); + if (i >= k) { + return; + } - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); + dst[i] = (T)op_silu_back((float)grad[i], (float)xf[i]); +} - if (src0->type == GGML_TYPE_F16) { - silu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - silu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +template +static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; + silu_back_kernel<<>>(grad, x, dst, k); } void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -467,137 +233,27 @@ void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) } } -void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); +/* leaky relu */ - if (src0->type == GGML_TYPE_F16) { - gelu_quick_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - gelu_quick_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +static __device__ __forceinline__ float op_leaky_relu(float x, const float negative_slope) { + return fmaxf(x, 0) + fminf(x, 0.0f) * negative_slope; } -void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - tanh_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - tanh_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); +template +static __global__ void leaky_relu_kernel(const T * x, T * dst, const int k, const float negative_slope) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; - if (src0->type == GGML_TYPE_F16) { - sigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - sigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); + if (i >= k) { + return; } -} -void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - hardsigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - hardsigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } + dst[i] = (T)op_leaky_relu((float)x[i], negative_slope); } -void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - hardswish_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - hardswish_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - exp_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - exp_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } +template +static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) { + const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; + leaky_relu_kernel<<>>(x, dst, k, negative_slope); } void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -621,98 +277,3 @@ void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) leaky_relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), negative_slope, stream); } } - -void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - sqr_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - sqr_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - sqrt_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - sqrt_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - sin_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - sin_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - cos_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - cos_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -} - -void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const void * src0_d = src0->data; - void * dst_d = dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(ggml_is_contiguous(src0)); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - if (src0->type == GGML_TYPE_F16) { - log_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); - } else { - log_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); - } -}