-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.tex
918 lines (818 loc) · 30.2 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
\documentclass[compress, aspectratio=169]{beamer}
%\setbeameroption{show notes on second screen=left}
\usepackage[utf8]{inputenc}
\usepackage{braket}
\newcommand{\identity}[0]{\mathbf{1}}
\newcommand{\Op}[1]{\ensuremath{\mathsf{\hat{#1}}}}
\def\mat#1{\hat{#1}}
\def\half{ \frac{1}{2}}
\newcommand{\TildeOp}[1]{\ensuremath{\mathsf{\tilde{#1}}}}
\newcommand{\vectorize}{\operatorname{vec}}
\newcommand{\Abs}[1]{\left|#1\right|}
\newcommand{\AbsSq}[1]{\left|#1\right|^2}
\newcommand{\Norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\NormSq}[1]{\Norm{#1}^2}
\newcommand{\tr}{\mathsf{tr}}
\newcommand{\Tr}{\mathsf{tr}}
\newcommand{\SU}{\ensuremath{\text{SU}}}
\newcommand{\ketbra}[2]{\ket{#1}\!\bra{#2}}
\newcommand{\mirror}{\text{mirror}}
\newcommand{\tgt}{\text{tgt}}
\newcommand{\pop}{\operatorname{pop}}
\newcommand{\dd}{\mathsf{d}}
\newcommand{\ii}{\mathsf{i}}
\newcommand{\Integers}{\mathbb{Z}}
\newcommand{\norm}{\operatorname{norm}}
\renewcommand{\Re}{\mathsf{Re}}
\renewcommand{\Im}{\mathsf{Im}}
\newcommand{\partdifquo}[2][{}]{\frac{\partial #1}{\partial #2}}
\newcommand{\Reals}{\mathbb{R}}
\newcommand{\Complex}{\mathbb{C}}
\newcommand{\Liouvillian}{\mathcal{L}}
\newcommand{\TimeOrder}{\mathcal{T}}
\newcommand{\SigmaX}{\Op{\sigma}_x}
\newcommand{\SigmaY}{\Op{\sigma}_y}
\newcommand{\SigmaZ}{\Op{\sigma}_z}
\newcommand{\SigmaPlus}{\Op{\sigma}_{\!+}}
\newcommand{\SigmaMinus}{\Op{\sigma}_{\!-}}
\usepackage{textcomp} % provides \textmu
\usepackage{tikz,pgflibraryshapes}
\usepackage{hyperref}
\usepackage{fontawesome}
\usetikzlibrary{arrows.meta, calc, decorations.pathmorphing, backgrounds, positioning}
%% Notes on screenshots:
%
% - Make sure ``Reduce Transparency'' in the Accessibility settings (Display) is off
% - Size window to 1270 x 625 (2540 x 1250 retina)
% - if no title on slide: increase height +41 to 666 (1332 retina)
% - Take screenshots at retina resolution
% - Terminal (iTerm) is at standard size +5 font size increases
% - JupyterLab in Arc – for slide without title:
% - total window size 1364 x 800
% - ``Simple Interface'' (View Menu)
% - ``Presentation Mode'' (View Menu)
% - No status bar (View Menu)
\input{arlwide_theme/theme.tex}
\title{Numerical Methods of \\Optimal Quantum Control}
\author[\href{https://michaelgoerz.net}{https://michaelgoerz.net}]{Michael~H.~Goerz}
\institute[Army Research Lab]{DEVCOM Army Research Lab}
\date{QuCS Lecture Series, August 24, 2023}
\begin{document}
{% Title page
\setbeamertemplate{footline}{}
\frame{%
\titlepage
\note{\dots}
}
}
\addtocounter{framenumber}{-1}
\begin{frame}{What is Quantum Control?}
\begin{center}
\Large \bf \color{DarkRed} Steer a quantum system in some desired way
\end{center}
\note<1>{%
So what is quantum control?
Well, it's basically the question of how to \emph{actively steer} a quantum system in some desired way
}
\end{frame}
\begin{frame}{Quantum Gates}
\begin{textblock}{15.5}(0.25,1.00)
\includegraphics<1>[width=\textwidth]{images/YaoCircuit}
\includegraphics<2>[width=\textwidth]{images/YaoCircuit_hl}
\end{textblock}
\note<1>{%
So, since this lecture series is focused on quantum computing
you're working at the level of a circuit diagram like this
But now from a control perspective we're interested in how exactly you would implement one of these gates physically, like \dots
}
\note<2>{%
\dots this controlled rotation.
So in the last few years, some of the quantum computing platforms, like Qiskit have added what they call ``pulse-level control'', so that's what we're talking about here.
And this really goes to the \emph{physics} of your platform
}
\end{frame}
\begin{frame}{Two-Transmon Gate}
\begin{textblock}{7.5}(0.5,1.25)
\includegraphics[width=\textwidth]{images/coupled_transmon}\\
\hfill\tiny{Majer \emph{et al.} Nature 449, 443 (2007)}\hspace{2mm}~\\
\end{textblock}
\begin{textblock}{6}(9,2.25)
\begin{equation*}
\Op{H} = \Op{H}_0 + \epsilon(t) \Op{H}_1
\end{equation*}
\end{textblock}
\begin{textblock}{5}(9.5,3.2)
\begin{tikzpicture}
\draw[->, line width = 1pt] (0, 0) -- +(0, 12pt);
\node[below] (0,0) {microwave field in transmission line};
\end{tikzpicture}
\end{textblock}
\begin{textblock}{4}(3,5.5)
\includegraphics<2->[height=3cm]{images/YaoCircuit_cutout}
\end{textblock}
\begin{textblock}{10}(6,6.0)
\onslide<2->{%
\begin{equation*}
\left.\begin{aligned}
\ket{00} & \rightarrow \text{CR}_2 \ket{00} \\
\ket{01} & \rightarrow \text{CR}_2 \ket{01} \\
\ket{10} & \rightarrow \text{CR}_2 \ket{10} \\
\ket{11} & \rightarrow \text{CR}_2 \ket{11}
\end{aligned} \quad \right\} \quad \begin{aligned}
& \text{with the same}~\epsilon(t); \\
& \text{acting on logical subspace}
\end{aligned}
\end{equation*}
}
\end{textblock}
\note<1>{%
So, for example, if you have superconducting qubits you'd have something like this Transmon circuit,
where you have two transmons with a shared transmission line, and the control you have is the field that you put into the transmission line.
}
\note<2>{%
And now we're going to try to find a field so that every logical basis state for a two-qubit system evolves so that it implements this controlled rotation.
\dots
But there's other control problems besides implementing gates.
}
\end{frame}
\begin{frame}{Controlling photo-chemical reactions}
\begin{textblock}{7.5}(0.5,1.5)
\includegraphics[width=0.95\textwidth]{images/tannor_rice_scheme}
\end{textblock}
\begin{textblock}{7.5}(8.0,1.25)
\begin{itemize}
\item Kosloff, Rice, et. al. \textit{Wavepacket dancing: Achieving chemical selectivity by shaping light pulses}. Chem. Phys. 139, 201 (1989).
\item Tannor, Jin. \textit{Design of femtosecond pulse sequences to control photochemical products}, in \textit{Mode Selective Chemistry} (Springer, 1991)
\item Shi, Rabitz. \textit{Optimal control of bond selectivity in unimolecular reactions}. Comput. Phys. Commun. 63, 71 (1991)
\item Judson, Rabitz. \textit{Teaching lasers to control molecules}. Phys. Rev. Lett. 68, 1500 (1992).
\end{itemize}
\end{textblock}
\end{frame}
\begin{frame}{Tractor atom interferometry}
\begin{textblock}{8.5}(0.75,1.5)
\includegraphics[width=\textwidth]{images/RaithelQST2022_Fig4}\\
\footnotesize{Raithel \emph{et al.} Quantum Sci. Technol. 8, 014001 (2022)}
\end{textblock}
\begin{textblock}{6}(9.75,3.5)
{\color{DarkRed}
Find non-adiabatic tractor potential\\
closing interferometric path
}
\end{textblock}
\note<1>{%
Or, something that's closer to what I'm doing these days,
you could have some trapped atoms where you split them into two trapping potentials and then you move the potentials along two different pathways to implement an interferometer.
And then you have to find exactly the right trajectory to combined the wavepackets again at the end.
}
\end{frame}
\begin{frame}{Outline}
\begin{itemize}
\item Formulating the control problem
\begin{itemize}
\item Quantum gates with coupled transmon qubits
\item Unconstrained control problems
\end{itemize}
\pause
\item Gradient-ascent (GRAPE)
\begin{itemize}
\item Simulating time dynamics
\item Evaluating gradients
\item Semi-automatic differentiation: evaluate arbitrary functionals
\item Example: Maximizing gate entanglement
\end{itemize}
\pause
\item Krotov's method
\pause
\item QuantumControl.jl: efficiently implementing quantum control
\pause
\item Parametrized and constrained control problems
\end{itemize}
\end{frame}
\begin{frame}{Quantum gates with coupled transmon qubits}
\begin{textblock}{15.0}(0.5,1.75)
\begin{center}
\only<1>{%
\includegraphics[width=0.7\textwidth]{images/coupled_transmon}\\
\hfill{\small Majer \emph{et al.} Nature 449, 443 (2007)}\hspace{2mm}~\\
}
\only<2>{%
\includegraphics[width=0.8\textwidth]{images/coupled_transmon_dispersive}
}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.0}(0.5,0.3)
\begin{center}
\includegraphics<1>[height=8.0cm]{images/blackboard_01}
\includegraphics<2>[height=8.0cm]{images/blackboard_02}
\includegraphics<3>[height=8.0cm]{images/blackboard_03}
\includegraphics<4>[height=8.0cm]{images/blackboard_04}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}{Time Discretization}
\begin{textblock}{6.5}(0.5,1.00)
\includegraphics<1>{images/pulse_examples_simple}
\includegraphics<2>{images/pulse_examples_continuous}
\includegraphics<3>{images/pulse_examples_discrete}
\includegraphics<4->{images/pulse_examples_pwc}
\end{textblock}
\begin{textblock}{7}(8.25,1.00)
\begingroup
\addtolength{\jot}{1em} % increase space between rows
\begin{align*}
i \hbar \frac{\partial}{\partial t} \ket{\Psi(t)} &= \Op{H}(\{\epsilon_l(t)\}) \ket{\Psi(t)}\\
i \hbar \frac{\partial}{\partial t} \hat\rho(t) &= \Liouvillian(\{\epsilon_l(t)\})[\hat\rho(t)]
\end{align*}
\endgroup
\end{textblock}
\begin{textblock}{14}(1.0,4.45)
\onslide<5->{%
\begin{center}
Piecewise constant: {$\Op{H}_n = \Op{H}(\{\epsilon_{nl}\})$ with $\epsilon_{nl} = \epsilon_l(t=t_n)$} for $n$'th time slice
\end{center}
}
\end{textblock}
\begin{textblock}{14}(1.0,5.9)
\onslide<6->{%
\begin{equation*}
J(\{\only<6>{\epsilon_l(t)}\only<7->{{\color{DarkRed}\epsilon_{nl}}}\}) = J_T(\{\ket{\Psi_k(T)}\}) + \int_{0}^T \dots dt
\end{equation*}
\vspace{-2pt}
\begin{center}
\onslide<8->{%
Gradient {\color{DarkRed}$\nabla J \equiv \frac{\partial{J}}{{\partial \epsilon_{nl}}}$}
\onslide<9->{$\quad \Rightarrow \quad$ LBFGS}
}
\end{center}
}
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15}(0.5,2.50)
\begin{center}
\Large
Gradient Ascent Pulse Engineering (GRAPE)
\end{center}
\vspace{3mm}
\begin{center}
How to calculate $\nabla J$ for PWC controls
\end{center}
\end{textblock}
\begin{textblock}{15}(0.5,6.50)
Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser.
\textit{Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms}. \\
J. Magnet. Res. 172, 296 (2005)
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.0}(0.5,0.3)
\begin{center}
\includegraphics<1>[height=8.0cm]{images/blackboard_06}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}{Aside: Wirtinger derivatives --- derivatives w.r.t. complex numbers}
%\begin{textblock}{3.0}(0.5,1.0)
\begin{equation*}
J_T (\{\tau_k\}) = J_T(\{\Re[\tau_k], \Im[\tau_k]\}); \qquad J_T \in \Reals, \quad \tau_k \in \Complex
\end{equation*}
\pause
\begin{equation*}
\frac{\partial J_T (\{\tau_k\})}{\partial \epsilon_{nl}} =
\sum_k \left(
\frac{\partial J_T}{\partial \Re[\tau_k]}
\frac{\partial \Re[\tau_k]}{\partial \epsilon_{nl}}
+ \frac{\partial J_T}{\partial \Im[\tau_k]}
\frac{\partial \Im[\tau_k]}{\partial \epsilon_{nl}}
\right);
\qquad \epsilon_{nl} \in \Reals
\end{equation*}
\pause
{
\color{DarkRed}
\begin{align*}
\text{Define} \quad \frac{\partial J_T (\{\tau_k\})}{\partial \tau_k}
& \equiv \frac{1}{2} \left(
\frac{\partial J_T}{\partial \Re[\tau_k]}
- i \frac{\partial J_T}{\partial \Im[\tau_k]}
\right) \\
\frac{\partial J_T (\{\tau_k\})}{\partial \tau_k^*}
& \equiv \frac{1}{2} \left(
\frac{\partial J_T}{\partial \Re[\tau_k]}
+ i \frac{\partial J_T}{\partial \Im[\tau_k]}
\right)
= \left(\frac{\partial J_T}{\partial \tau_k}\right)^*
\end{align*}
}
\vspace{1mm}
\pause
\begin{equation*}
\frac{\partial J_T (\{\tau_k\})}{\partial \epsilon_{nl}}
=
\sum_k \left(
\frac{\partial J_T}{\partial \tau_k}
\frac{\partial \tau_k}{\partial \epsilon_{nl}}
+ \frac{\partial J_T}{\partial \tau_k^*}
\frac{\partial \tau_k^*}{\partial \epsilon_{nl}}
\right)
=
2 \Re \left[
\sum_k
\frac{\partial J_T}{\partial \tau_k} \frac{\partial \tau_k}{\partial \epsilon_{nl}}
\right]
\end{equation*}
%\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.0}(0.5,0.3)
\begin{center}
\includegraphics<1>[height=8.0cm]{images/blackboard_08}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}{Piecewise-constant time propagation}
\begin{textblock}{6.5}(0.5,1.00)
\includegraphics<1->{images/pulse_examples_pwc}
\end{textblock}
\begin{textblock}{7}(8.25,1.00)
\begingroup
\addtolength{\jot}{1em} % increase space between rows
\begin{align*}
i \hbar \frac{\partial}{\partial t} \ket{\Psi(t)} &= \Op{H}(\{\epsilon_l(t)\}) \ket{\Psi(t)}\\
i \hbar \frac{\partial}{\partial t} \hat\rho(t) &= \Liouvillian(\{\epsilon_l(t)\})[\hat\rho(t)]
\end{align*}
\endgroup
\end{textblock}
\begin{textblock}{14}(1.0,4.45)
\onslide<2->{%
\begin{center}
PWC propagator: {\color{DarkRed}$\Op{U}_n = \exp[-\frac{i}{\hbar} \Op{H}_n dt]$} for $n$'th time slice
\end{center}
}
\end{textblock}
\begin{textblock}{14}(1.0,5.95)
\onslide<3->{%
$\Rightarrow$ evaluate $\Op{U}_n \ket{\Psi}$ (or $\mathcal{U}_n[\hat\rho]$) as a polynomial expansion
\vspace{5mm}
\onslide<4->{
\begin{itemize}
\item Hermitian Hamiltonian $\rightarrow$ Chebychev polynomials
\item Non-Hermitian Hamiltonian or Liouvillian $\rightarrow$ Newton polynomials
\end{itemize}
}
}
\end{textblock}
\end{frame}
\begin{frame}{Chebychev Propagation}
\begin{textblock}{14}(1.0, 1.25)
\onslide<1->{%
\subhead{Chebychev Polynomials}
\onslide<1->{%
\begin{equation*}
P_0(x) = 1;\quad
P_1(x) = x;\quad
P_n(x) = 2x P_n(x) - P_{n-1}(x)
\end{equation*}
$P_n(x) \quad \text{ are defined for } \quad x \in [-1, 1]$
}
}
\end{textblock}
\begin{textblock}{14}(1.0, 4.35)
\onslide<2->{%
\begin{equation*}
\Ket{\Psi(t+dt)}
= e^{-\ii \Op{H} \,dt} \Ket{\Psi(t)}
= \sum_{n} a_n \underbrace{P_n(-\ii \Op{H}_{\text{norm}}) \Ket{\Psi(t)}}_{%
\equiv \Ket{\Phi_n}}\,,
\end{equation*}
}
\end{textblock}
\begin{textblock}{14}(1.0, 5.65)
\onslide<3->{%
\begin{equation*}
\Op{H}_{\norm} = 2 \frac{\Op{H} - E_{\min}\,\identity}{\Delta} - \identity\,,\qquad
a_n = (2-\delta_{n0})
e^{-\frac{\ii}{\hbar} \left( \frac{\Delta}{2} + E_{\min}\right)\,dt}
J_k(\alpha)\,,
\end{equation*}
\begin{equation*}
\ket{\Phi_0(x)} = \ket{\Psi(t)};\quad
\ket{\Phi_1(x)} = -\ii \Op{H}_{\norm} \Ket{\Phi_0};\quad
\ket{\Phi_n(x)} = -2\ii \Op{H}_{\norm} \Ket{\Phi_{n-1}} + \Ket{\Phi_{n-2}}
\end{equation*}
}
\end{textblock}
\end{frame}
\begin{frame}{Chebychev Propagation – Pseudocode}
\begin{textblock}{15}(0.5, 1.5)
\includegraphics[width=0.49\textwidth]{images/chebyalg1}
\includegraphics[width=0.49\textwidth]{images/chebyalg2}
\par
{\footnotesize
\vspace{-7mm}
\hfill
Goerz, PhD Thesis, Appendix F\\
\hfill
\url{https://michaelgoerz.net}
}
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.5}(0.25,0.2)
{\footnotesize
\url{https://github.com/JuliaQuantumControl/QuantumPropagators.jl}
}
\end{textblock}
\begin{textblock}{15.5}(0.25,0.5)
\includegraphics[width=\textwidth]{images/cheby_implementation}
\end{textblock}
\end{frame}
\begin{frame}{Gradient of Time Evolution Operator}
\begin{equation*}%
\begin{pmatrix}
\frac{\partial \Op{U}^{\dagger}_n}{\partial \epsilon_{n1}} \ket{\chi_k(t_{n})} \\
\vdots\\
\frac{\partial \Op{U}^{\dagger}_n}{\partial \epsilon_{nL}} \ket{\chi_k(t_{n})} \\
\Op{U}^{\dagger}_n \ket{\chi_k(t_{n})}
\end{pmatrix}
= \exp \left[-\ii \begin{pmatrix}
\Op{H}^\dagger_n & 0 & \dots & 0 &\Op{H}_n^{(1)\dagger} \\
0 & \Op{H}^\dagger_n & \dots & 0 & \Op{H}_n^{(2)\dagger} \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & \Op{H}^\dagger_n & \Op{H}_n^{(L)\dagger} \\
0 & 0 & \dots & 0 & \Op{H}^\dagger_n\,,
\end{pmatrix} dt_n\right]
\begin{pmatrix} 0 \\ \vdots \\ 0 \\ \ket{\chi_k(t_n)} \end{pmatrix}
\end{equation*}
\vspace{5mm}
\begin{equation*}
\Op{U}_n = \exp[-\ii \Op{H}_n dt_n]\,;
\qquad
\Op{H}_n^{(l)} = \frac{\partial \Op{H}_n}{\partial \epsilon_l(t)}
\end{equation*}
\par
\vspace{5mm}
\hfill \footnotesize{--- Goodwin, Kuprov, J. Chem. Phys. 143, 084113 (2015)}\\
\vspace{3mm}
\hfill \footnotesize{\url{https://github.com/JuliaQuantumControl/QuantumGradientGenerators.jl}}
\end{frame}
\begin{frame}{Optimizing for a Maximally Entangling Gate}
\begin{textblock}{5.25}(10.5,2.50)
\includegraphics<2->[width=\textwidth]{images/weylchamber}
\end{textblock}
\begin{textblock}{14}(0.5, 1.60)
\onslide<2->{%
\subhead{Cartan decomposition}
\begin{equation*}
\Op{U} = \Op{k}_1 \exp\left[ \frac{\ii}{2} \left(
{\color{Red}c_1} \SigmaX\SigmaX
+ {\color{Red}c_2} \SigmaY\SigmaY
+ {\color{Red}c_3} \SigmaZ\SigmaZ
\right) \right] \Op{k}_2
\end{equation*}
$\Op{k}_{1,2}$: Single qubit gates; \hspace{24pt}
$c_{1,2,3}$: Weyl chamber coordinates
}
\end{textblock}
\begin{textblock}{9.5}(0.5,4.85)
\only<3->{%
\subhead{Gate concurrence of two-qubit gate $\Op{U}$}
\vspace{3mm}
\begin{enumerate}
\item
$
c_1, c_2, c_3 \propto
\text{eigvals}\left( \Op{U} \TildeOp{U} \right)\,;\quad
\TildeOp{U} = (\Op{\sigma}_y \otimes \Op{\sigma}_y) \,\Op{U}\, (\Op{\sigma}_y \otimes \Op{\sigma}_y)
$
\item
$
C(\Op{U})
= \max \Abs{\sin(c_{1,2,3} \pm c_{3,1,2})}
$
\end{enumerate}
\hfill {\footnotesize Childs \textit{et al.} Phys. Rev. A 68, 052311 (2003)}\\
\only<4>{\vspace{6pt}\hspace{10mm}{\color{Red} \bf Not analytic!}}
}
\end{textblock}
\end{frame}
\begin{frame}{Automatic differentiation (AD)}
\begin{textblock}{14}(1.0,1.0)
\only<1>{%
\vspace{12mm}
\begin{itemize}
\item Build computational graph for time propagation
\item Elementary operations have known derivatives
\item Let computer apply chain rule at each node in graph
\item Backward pass to accumulate gradient
\end{itemize}
\vspace{16mm}
\begin{itemize}
\footnotesize
\item[---] Leung \textit{et al.} Phys. Rev. A 95, 042318 (2017)
\item[---] Abdelhafez \textit{et al.}, Phys. Rev. A 99, 052327 (2019)
\item[---] Schäfer, \textit{et al.} Mach. Learn.: Sci. Technol. 1, 035009 (2020)
\item[---] Abdelhafez \textit{et al.} Phys. Rev. A 101, 022321 (2020)
\end{itemize}
}
\only<2>{%
\begin{center}
\includegraphics[width=0.5\textwidth]{images/nn_graph}\\
{\footnotesize Fig. 2 in Leung \emph{et al.} Phys. Rev. A 95, 042318 (2017)}
\end{center}
}
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.0}(0.5,0.3)
\begin{center}
\includegraphics<1>[height=8.0cm]{images/blackboard_10}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}{Generalized GRAPE scheme}
\begin{textblock}{15}(0.5,1.0)
\begin{center}
\input{images/grape.tikz}
\end{center}
\end{textblock}
\begin{textblock}{3}(11.5, 1.4)
\begin{tikzpicture}
\draw<4-> (0,0) node[line width = 3pt, draw=black, inner sep = 6pt, fill=gray!20,rounded corners=10] {
$\tau^{(k)} = \Braket{\chi_k(T)|\Psi_k(T)}$
};
\end{tikzpicture}
\end{textblock}
\begin{textblock}{3}(0.3, 1.4)
\begin{tikzpicture}
\draw<5-> (0,0) node[line width = 3pt, draw=black, inner sep = 6pt, fill=gray!20,rounded corners=10] {
$\nabla J_T = 2 \Re \sum_k \nabla \tau^{(k)}$
};
\end{tikzpicture}
\end{textblock}
\begin{textblock}{15}(0.5,8.15)
\hfill \footnotesize{--- Goerz \emph{et al.} Quantum 6, 871 (2022)}
\end{textblock}
\end{frame}
\begin{frame}
\begin{textblock}{15.5}(0.25,0.5)
\includegraphics<1>[width=\textwidth]{images/example01} % still image
\end{textblock}
\begin{textblock}{12}(2.0,7.0)
\begin{center}
\begin{block}
\large
\url{https://github.com/JuliaQuantumControl/JuliaCon2023-Demo}
\end{block}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}
\vspace{8mm}
GRAPE: discretize first, then calculate gradient
\par
\vspace{8mm}
\pause
Alternative: variational calculus $\frac{\partial J}{\partial \epsilon(t)}$ --- \emph{then} discretize
\pause
\vspace{5mm}
\begin{itemize}
\item Adjoint method: add TDSE as constraint with Lagrage multiplier $\bra{\chi_k}$
{\footnotesize
\begin{itemize}
\item[---] Shi, Rabitz, J. Chem. Phys. 92, 364 (1990)
\item[---] Zhu, Botina, Rabitz, J. Chem. Phys. 108, 1953 (1998)
\end{itemize}
}
\pause
\vspace{5mm}
\item Krotov's method: constructive approach
{\footnotesize
\begin{itemize}
\item[---] Krotov, Feldman, Eng. Cybern. 21, 123 (1983)
\item[---] Tannor, Kazakov, Orlov. In \textit{Time-dependent quantum molecular dynamics} (1992)
\item[---] Reich, Ndong, Koch. J. Chem. Phys. Physics 136, 104103 (2012)
\item[---] Goerz \textit{et al.} SciPost Phys. 7, 080 (2019) [Python implementation]
\end{itemize}
}
\end{itemize}
\end{frame}
\begin{frame}
\begin{textblock}{15.0}(0.5,0.3)
\begin{center}
\includegraphics<1>[height=8.0cm]{images/blackboard_12}
\end{center}
\end{textblock}
\end{frame}
\begin{frame}{Krotov Numerical Scheme}
\begin{textblock}{15}(0.5,1.0)
\begin{center}
\input{images/krotov.tikz}
\end{center}
\end{textblock}
\begin{textblock}{15}(0.5,8.15)
\hfill \footnotesize{--- Goerz \emph{et al.} Quantum 6, 871 (2022)}
\end{textblock}
\end{frame}
\begin{frame}{GRAPE and Krotov Numerical Scheme Comparison}
\begin{textblock}{15.5}(0.25,1.25)
\begin{center}
\includegraphics{images/schemes_comparison}
\end{center}
\end{textblock}
\begin{textblock}{14}(1.0,6.75)
concurrent update \hfill sequential update
\end{textblock}
\begin{textblock}{15.5}(0.25,7.75)
\hfill \footnotesize{--- Goerz \emph{et al.} Quantum 6, 871 (2022)}
\end{textblock}
\end{frame}
% TODO: comparison
\begin{frame}{QuantumControl.jl}
\begin{textblock}{15.5}(0.25,1.00)
\includegraphics<1>[width=\textwidth]{images/JuliaQuantumControl}
\end{textblock}
\end{frame}
\begin{frame}{Dynamical Generator}
\begin{textblock}{15.5}(0.25,1.00)
\includegraphics<1>[width=\textwidth]{images/generator_glossary}
\includegraphics<2>[width=\textwidth]{images/generator_glossary_g2}
\includegraphics<3>[width=\textwidth]{images/generator_glossary_g3}
\includegraphics<4>[width=\textwidth]{images/generator_glossary}
\includegraphics<5>[width=\textwidth]{images/generator_glossary_g2}
\includegraphics<6>[width=\textwidth]{images/generator_glossary}
\includegraphics<7>[width=\textwidth]{images/generator_glossary_g1}
\end{textblock}
\begin{textblock}{15.5}(0.25,4.80)
\begin{center}
\includegraphics<5>[width=11.55cm]{images/hamiltonian_call}
\end{center}
\end{textblock}
\begin{textblock}{12}(2.0,0.5)
\begin{center}
\begin{block}
\large
\url{https://github.com/JuliaQuantumControl/JuliaCon2023-Slides}
\end{block}
\end{center}
\end{textblock}
\note<1>{%
So the underlying concept that's pretty central in the QuantumControl package is that of a ``dynamical generator''
which is the object that describes the dynamics of a state
so a time-dependent Hamiltonian or Liouvillian
and mathematically the structure that's most directly supported is \dots
}
\note<2>{%
\dots this equation here,
where you have a drift term, and then you have control operators that get multiplied with a control amplitude
And the control amplitude depends on one or more control functions epsilon, which are what we're going to be manipulating directly with optimal control.
So in many cases, the control amplitude is just directly the control function, and then you get \dots
}
\note<3>{%
this linear control Hamiltonian down here
}
\note<4>{%
But in general you could have an amplitude where you add noise on top of your control function, or you have some amplitude that depends non-linearly on one or more controls, like a spin-orbit coupling that's quadratic in the field, or you have some transfer function of a waveform generator, or so many other things.
So it's really quite flexible.
}
\note<5>{%
And the call to ``hamiltonian'' gives you exactly this structure, where you give tuples of control operators and control amplitudes
}
\note<6>{%
But you could in fact be even more general\dots
}
\note<7>{%
\dots and have operators that depend in some completely arbitrary way on any number of control functions
}
\end{frame}
\begin{frame}{Generator Interface}
\begin{textblock}{15.5}(0.25,1.00)
\includegraphics<1>[width=\textwidth]{images/generator_interface}
\includegraphics<2>[width=\textwidth]{images/generator_interface_get_controls}
\includegraphics<3>[width=\textwidth]{images/generator_interface_evaluate}
\end{textblock}
\note<1>{%
So ultimately we just have an abstract interface for what you can use as a dynamical generator
So you have to be able to \dots
}
\note<2>{%
\dots extract ``controls'', which are scalar functions or arrays, because otherwise you don't have anything to do optimal control on
And you have to be able to \dots
}
\note<3>{%
\dots evaluate your generator by plugging in values for the controls at a particular point in time
and that has to give you an ``operator''
which has its own abstract interface
but that's basically just an object for which you have to define all the linear algebra operations that you can multiply it to a state.
}
\end{frame}
\begin{frame}{Propagator Interface}
\begin{textblock}{15.5}(0.25,1.00)
\includegraphics[width=\textwidth]{images/propagator_interface}
\end{textblock}
\note<1>{%
And again this is all implemented via an abstract interface.
So you can implement propagators where you just need an init-prop function
And then you can step through the time grid with a prop-step function
So the Schrödinger equation is implicit in this propagator, but you have have something different like a Gross-Pitaevskii equation, you could define your own propagator according to that interface.
}
\end{frame}
\begin{frame}{Parametrized Control Fields}
\begin{textblock}{6.5}(0.5,1.25)
\includegraphics<1->{images/pulse_examples_continuous}
\end{textblock}
\begin{textblock}{7}(7.75,1.35)
\onslide<2->{%
\begin{center}
piecewise-constant pulses
\par
$\Rightarrow$ parametrized continuous controls
\begin{equation*}
\epsilon(t) = \epsilon(\{u_n\}, t)
\end{equation*}
\end{center}
}
\end{textblock}
\begin{textblock}{14}(1.0,5.25)
\onslide<3->{%
E.g. CRAB -- Chopped Random (spectral) Basis
\begin{equation*}
\epsilon(t)
= \sum_{i=1}^{10} \left(
{\color{DarkRed} a_n} \cos(\omega_n t)
+ {\color{DarkRed} b_n} \sin(\omega_n t)
\right)
\end{equation*}
{\footnotesize
\hfill --- Caneva \textit{et al.} Phys. Rev. A 84, 022326 (2011)
}
}
\end{textblock}
\end{frame}
\begin{frame}{Gradient-free optimization}
\begin{center}
\includegraphics{images/nelder_mead}\\
{\footnotesize\vspace{-2mm}\hspace{-15mm} Doria et al. PRL 106, 190501 (2011)}
\end{center}
\vspace{12pt}
e.g. Nelder-Mead (simplex), genetic algorithms\dots
\end{frame}
\begin{frame}{Gradients of parametrized pulses}
\begin{equation*}%
\begin{pmatrix}
\frac{\partial \Op{U}}{\partial u_1} \ket{\Psi_k} \\
\vdots\\
\frac{\partial \Op{U}}{\partial u_N} \ket{\Psi_k} \\
\Op{U} \ket{\Psi_k}
\end{pmatrix}
= \exp \left[-\ii \TimeOrder \int_0^T \begin{pmatrix}
\Op{H}(t) & 0 & \dots & 0 &\Op{H}^{(1)}(t) \\
0 & \Op{H}(t) & \dots & 0 & \Op{H}^{(2)}(t) \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & \Op{H}(t) & \Op{H}^{(N)}(t) \\
0 & 0 & \dots & 0 & \Op{H}(t)
\end{pmatrix} dt\right]
\begin{pmatrix} 0 \\ \vdots \\ 0 \\ \ket{\Psi_k} \end{pmatrix}
\end{equation*}
\par
\vspace{5mm}
\hspace{1cm}
with $\Op{H}^{(n)}(t) = \frac{\partial \Op{H}(t)}{\partial u_n}$
\par
\vspace{5mm}
{\footnotesize
\hfill --- ``GOAT'': Machnes \textit{et al.} Phys. Rev. Lett. 120, 150401 (2018)
}
\end{frame}
\appendix
\backupbegin
\begin{frame}
\end{frame}
\begin{frame}{Open Quantum Systems}
\subhead{Lindblad equation:}
\begin{align*}
\frac{d}{dt}\Op{\rho}(t)
& =-i\left[\Op{H},\Op{\rho}(t)\right]+\mathcal{L}_{D}(\Op{\rho}(t))\\
& =-i\left[\Op{H},\Op{\rho}(t)\right]+\sum_{k}\left(\Op{A}_{k}\Op{\rho}\Op{A}_{k}^{\dagger}-\frac{1}{2}\Op{A}_{k}^{\dagger}\Op{A}_{k}\Op{\rho}-\frac{1}{2}\Op{\rho}\Op{A}_{k}^{\dagger}\Op{A}_{k}\right)
\end{align*}
\subhead{Vectorization rule:}
\begin{equation*}
\vectorize\left(\Op{A} \Op{\rho} \Op{B} \right)
= \left(\mat{B}^{T} \otimes \mat{A}\right) \vec{\rho}
\end{equation*}
\subhead{Matrix representation of Lindbladian:}
\begin{equation*}
\mat{L} =
-i (\identity \otimes \mat{H}) + i (\mat{H}^T \otimes \identity)
+ \sum_k \left[
(\mat{A}_k^\dagger)^T \otimes \mat{A}_k
- \half \left(\identity \otimes \mat{A}_k^\dagger \mat{A}_k\right)
- \half \left((\mat{A}_k^\dagger \mat{A}_k)^T \otimes \identity\right)
\right]\
\end{equation*}
\hfill {\footnotesize --- Goerz \textit{et. al.} arXiv:1312.0111v2 (2021), Appendix B}
\end{frame}
\backupend
\end{document}