-
Notifications
You must be signed in to change notification settings - Fork 788
/
Copy pathdtls_record.cc
579 lines (513 loc) · 19.9 KB
/
dtls_record.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const {
const size_t kWindowSize = map_.size();
if (seq_num > max_seq_num_) {
return false;
}
uint64_t idx = max_seq_num_ - seq_num;
return idx >= kWindowSize || map_[idx];
}
void DTLSReplayBitmap::Record(uint64_t seq_num) {
const size_t kWindowSize = map_.size();
// Shift the window if necessary.
if (seq_num > max_seq_num_) {
uint64_t shift = seq_num - max_seq_num_;
if (shift >= kWindowSize) {
map_.reset();
} else {
map_ <<= shift;
}
max_seq_num_ = seq_num;
}
uint64_t idx = max_seq_num_ - seq_num;
if (idx < kWindowSize) {
map_[idx] = true;
}
}
static uint16_t dtls_record_version(const SSL *ssl) {
if (ssl->s3->version == 0) {
// Before the version is determined, outgoing records use dTLS 1.0 for
// historical compatibility requirements.
return DTLS1_VERSION;
}
// DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the
// version itself.
return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION
: ssl->s3->version;
}
static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) {
// DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the
// combined value. If the version is not known, the epoch is unencrypted and
// the value is ignored.
return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION)
? num.sequence()
: num.combined();
}
// reconstruct_epoch finds the largest epoch that ends with the epoch bits from
// |wire_epoch| that is less than or equal to |current_epoch|, to match the
// epoch reconstruction algorithm described in RFC 9147 section 4.2.2.
static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) {
uint16_t current_epoch_high = current_epoch & 0xfffc;
uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high;
if (epoch > current_epoch && current_epoch_high > 0) {
epoch -= 0x4;
}
return epoch;
}
uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask,
uint64_t max_valid_seqnum) {
// Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to
// enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2
// bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would
// require 5 petabytes. This allows us to continue to pack a DTLS record
// number into an 8-byte structure.
assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence);
assert(seq_mask == 0xff || seq_mask == 0xffff);
uint64_t max_seqnum_plus_one = max_valid_seqnum + 1;
uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask;
uint64_t step = seq_mask + 1;
// This addition cannot overflow. It is at most 2^48 + seq_mask. It, however,
// may exceed 2^48-1.
uint64_t seqnum = max_seqnum_plus_one + diff;
bool too_large = seqnum > DTLSRecordNumber::kMaxSequence;
// If the diff is larger than half the step size, then the closest seqnum
// to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of
// seqnum.
bool closer_is_less = diff > step / 2;
// Subtracting step from seqnum will cause underflow if seqnum is too small.
bool would_underflow = seqnum < step;
if (too_large || (closer_is_less && !would_underflow)) {
seqnum -= step;
}
assert(seqnum <= DTLSRecordNumber::kMaxSequence);
return seqnum;
}
static Span<uint8_t> cbs_to_writable_bytes(CBS cbs) {
return Span(const_cast<uint8_t *>(CBS_data(&cbs)), CBS_len(&cbs));
}
struct ParsedDTLSRecord {
// read_epoch will be null if the record is for an unrecognized epoch. In that
// case, |number| may be unset.
DTLSReadEpoch *read_epoch = nullptr;
DTLSRecordNumber number;
CBS header, body;
uint8_t type = 0;
uint16_t version = 0;
};
static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) {
// Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for
// backwards compatibility.
return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION &&
epoch > 0;
}
static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
if (out->type & 0x10) {
// Connection ID bit set, which we didn't negotiate.
return false;
}
uint16_t max_epoch = ssl->d1->read_epoch.epoch;
if (ssl->d1->next_read_epoch != nullptr) {
max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch);
}
uint16_t epoch = reconstruct_epoch(out->type, max_epoch);
size_t seq_len = (out->type & 0x08) ? 2 : 1;
CBS seq_bytes;
if (!CBS_get_bytes(in, &seq_bytes, seq_len)) {
return false;
}
if (out->type & 0x04) {
// 16-bit length present
if (!CBS_get_u16_length_prefixed(in, &out->body)) {
return false;
}
} else {
// No length present - the remaining contents are the whole packet.
// CBS_get_bytes is used here to advance |in| to the end so that future
// code that computes the number of consumed bytes functions correctly.
BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in)));
}
// Drop the previous read epoch if expired.
if (ssl->d1->prev_read_epoch != nullptr &&
ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec >
ssl->d1->prev_read_epoch->expire) {
ssl->d1->prev_read_epoch = nullptr;
}
// Look up the corresponding epoch. This header form only matches encrypted
// DTLS 1.3 epochs.
DTLSReadEpoch *read_epoch = nullptr;
if (epoch == ssl->d1->read_epoch.epoch) {
read_epoch = &ssl->d1->read_epoch;
} else if (ssl->d1->next_read_epoch != nullptr &&
epoch == ssl->d1->next_read_epoch->epoch) {
read_epoch = ssl->d1->next_read_epoch.get();
} else if (ssl->d1->prev_read_epoch != nullptr &&
epoch == ssl->d1->prev_read_epoch->epoch.epoch) {
read_epoch = &ssl->d1->prev_read_epoch->epoch;
}
if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) {
out->read_epoch = read_epoch;
// Decrypt and reconstruct the sequence number:
uint8_t mask[2];
if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) {
// GenerateMask most likely failed because the record body was not long
// enough.
return false;
}
// Apply the mask to the sequence number in-place. The header (with the
// decrypted sequence number bytes) is used as the additional data for the
// AEAD function.
auto writable_seq = cbs_to_writable_bytes(seq_bytes);
uint64_t seq = 0;
for (size_t i = 0; i < writable_seq.size(); i++) {
writable_seq[i] ^= mask[i];
seq = (seq << 8) | writable_seq[i];
}
uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1,
read_epoch->bitmap.max_seq_num());
out->number = DTLSRecordNumber(epoch, full_seq);
}
return true;
}
static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
uint64_t epoch_and_seq;
if (!CBS_get_u16(in, &out->version) || //
!CBS_get_u64(in, &epoch_and_seq) ||
!CBS_get_u16_length_prefixed(in, &out->body)) {
return false;
}
out->number = DTLSRecordNumber::FromCombined(epoch_and_seq);
uint16_t epoch = out->number.epoch();
bool version_ok;
if (epoch == 0) {
// Only check the first byte. Enforcing beyond that can prevent decoding
// version negotiation failure alerts.
version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR;
} else {
version_ok = out->version == dtls_record_version(ssl);
}
if (!version_ok) {
return false;
}
// Look up the corresponding epoch. In DTLS 1.2, we only need to consider one
// epoch.
if (epoch == ssl->d1->read_epoch.epoch &&
!use_dtls13_record_header(ssl, epoch)) {
out->read_epoch = &ssl->d1->read_epoch;
}
return true;
}
static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) {
CBS copy = *cbs;
if (!CBS_get_u8(cbs, &out->type)) {
return false;
}
bool ok;
if ((out->type & 0xe0) == 0x20) {
ok = parse_dtls13_record(ssl, cbs, out);
} else {
ok = parse_dtls12_record(ssl, cbs, out);
}
if (!ok) {
return false;
}
if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
return false;
}
size_t header_len = CBS_data(&out->body) - CBS_data(©);
BSSL_CHECK(CBS_get_bytes(©, &out->header, header_len));
return true;
}
enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
DTLSRecordNumber *out_number,
Span<uint8_t> *out,
size_t *out_consumed,
uint8_t *out_alert, Span<uint8_t> in) {
*out_consumed = 0;
if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
return ssl_open_record_close_notify;
}
if (in.empty()) {
return ssl_open_record_partial;
}
CBS cbs(in);
ParsedDTLSRecord record;
if (!parse_dtls_record(ssl, &cbs, &record)) {
// The record header was incomplete or malformed. Drop the entire packet.
*out_consumed = in.size();
return ssl_open_record_discard;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header);
if (record.read_epoch == nullptr ||
record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) {
// Drop this record. It's from an unknown epoch or is a replay. Note that if
// the record is from next epoch, it could be buffered for later. For
// simplicity, drop it and expect retransmit to handle it later; DTLS must
// handle packet loss anyway.
*out_consumed = in.size() - CBS_len(&cbs);
return ssl_open_record_discard;
}
// Decrypt the body in-place.
if (!record.read_epoch->aead->Open(out, record.type, record.version,
dtls_aead_sequence(ssl, record.number),
record.header,
cbs_to_writable_bytes(record.body))) {
// Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347.
// Clear the error queue of any errors decryption may have added. Drop the
// entire packet as it must not have come from the peer.
//
// TODO(davidben): This doesn't distinguish malloc failures from encryption
// failures.
ERR_clear_error();
*out_consumed = in.size() - CBS_len(&cbs);
return ssl_open_record_discard;
}
*out_consumed = in.size() - CBS_len(&cbs);
// DTLS 1.3 hides the record type inside the encrypted data.
bool has_padding = !record.read_epoch->aead->is_null_cipher() &&
ssl_protocol_version(ssl) >= TLS1_3_VERSION;
// Check the plaintext length.
size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0);
if (out->size() > plaintext_limit) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
if (has_padding) {
do {
if (out->empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_DECRYPT_ERROR;
return ssl_open_record_error;
}
record.type = out->back();
*out = out->subspan(0, out->size() - 1);
} while (record.type == 0);
}
record.read_epoch->bitmap.Record(record.number.sequence());
// Once we receive a record from the next epoch in DTLS 1.3, it becomes the
// current epoch. Also save the previous epoch. This allows us to handle
// packet reordering on KeyUpdate, as well as ACK retransmissions of the
// Finished flight.
if (record.read_epoch == ssl->d1->next_read_epoch.get()) {
assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION);
auto prev = MakeUnique<DTLSPrevReadEpoch>();
if (prev == nullptr) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return ssl_open_record_error;
}
// Release the epoch after a timeout.
prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec;
if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) {
prev->expire = UINT64_MAX; // Saturate on overflow.
} else {
prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS;
}
prev->epoch = std::move(ssl->d1->read_epoch);
ssl->d1->prev_read_epoch = std::move(prev);
ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch);
ssl->d1->next_read_epoch = nullptr;
}
// TODO(davidben): Limit the number of empty records as in TLS? This is only
// useful if we also limit discarded packets.
if (record.type == SSL3_RT_ALERT) {
return ssl_process_alert(ssl, out_alert, *out);
}
// Reject application data in epochs that do not allow it.
if (record.type == SSL3_RT_APPLICATION_DATA) {
bool app_data_allowed;
if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
// Application data is allowed in 0-RTT (epoch 1) and after the handshake
// (3 and up).
app_data_allowed =
record.number.epoch() == 1 || record.number.epoch() >= 3;
} else {
// Application data is allowed starting epoch 1.
app_data_allowed = record.number.epoch() >= 1;
}
if (!app_data_allowed) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
}
ssl->s3->warning_alert_count = 0;
*out_type = record.type;
*out_number = record.number;
return ssl_open_record_success;
}
static DTLSWriteEpoch *get_write_epoch(const SSL *ssl, uint16_t epoch) {
if (ssl->d1->write_epoch.epoch() == epoch) {
return &ssl->d1->write_epoch;
}
for (const auto &e : ssl->d1->extra_write_epochs) {
if (e->epoch() == epoch) {
return e.get();
}
}
return nullptr;
}
size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) {
if (!use_dtls13_record_header(ssl, epoch)) {
return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH;
}
// The DTLS 1.3 has a variable length record header. We never send Connection
// ID, we always send 16-bit sequence numbers, and we send a length. (Length
// can be omitted, but only for the last record of a packet. Since we send
// multiple records in one packet, it's easier to implement always sending the
// length.)
return DTLS1_3_RECORD_HEADER_WRITE_LENGTH;
}
size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
size_t ret = dtls_record_header_write_len(ssl, epoch) +
write_epoch->aead->MaxOverhead();
if (use_dtls13_record_header(ssl, epoch)) {
// Add 1 byte for the encrypted record type.
ret++;
}
return ret;
}
size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
return dtls_record_header_write_len(ssl, epoch) +
write_epoch->aead->ExplicitNonceLen();
}
size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
size_t header_len = dtls_record_header_write_len(ssl, epoch);
if (max_out <= header_len) {
return 0;
}
max_out -= header_len;
max_out = write_epoch->aead->MaxSealInputLen(max_out);
if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) {
// Remove 1 byte for the encrypted record type.
max_out--;
}
return max_out;
}
bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out,
size_t *out_len, size_t max_out, uint8_t type,
const uint8_t *in, size_t in_len, uint16_t epoch) {
const size_t prefix = dtls_seal_prefix_len(ssl, epoch);
if (buffers_alias(in, in_len, out, max_out) &&
(max_out < prefix || out + prefix != in)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return false;
}
// Determine the parameters for the current epoch.
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
const size_t record_header_len = dtls_record_header_write_len(ssl, epoch);
// Ensure the sequence number update does not overflow.
DTLSRecordNumber record_number = write_epoch->next_record;
if (!record_number.HasNext()) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return false;
}
bool dtls13_header = use_dtls13_record_header(ssl, epoch);
uint8_t *extra_in = NULL;
size_t extra_in_len = 0;
if (dtls13_header) {
extra_in = &type;
extra_in_len = 1;
}
size_t ciphertext_len;
if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len,
extra_in_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return false;
}
if (max_out < record_header_len + ciphertext_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return false;
}
uint16_t record_version = dtls_record_version(ssl);
if (dtls13_header) {
// The first byte of the DTLS 1.3 record header has the following format:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0|0|1|C|S|L|E E|
// +-+-+-+-+-+-+-+-+
//
// We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length
// is present), which is a mask of 0x2c. The E E bits are the low-order two
// bits of the epoch.
//
// +-+-+-+-+-+-+-+-+
// |0|0|1|0|1|1|E E|
// +-+-+-+-+-+-+-+-+
out[0] = 0x2c | (epoch & 0x3);
// We always use a two-byte sequence number. A one-byte sequence number
// would require coordinating with the application on ACK feedback to know
// that the peer is not too far behind.
CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence());
// TODO(crbug.com/42290594): When we know the record is last in the packet,
// omit the length.
CRYPTO_store_u16_be(out + 3, ciphertext_len);
} else {
out[0] = type;
CRYPTO_store_u16_be(out + 1, record_version);
CRYPTO_store_u64_be(out + 3, record_number.combined());
CRYPTO_store_u16_be(out + 11, ciphertext_len);
}
Span<const uint8_t> header(out, record_header_len);
if (!write_epoch->aead->SealScatter(
out + record_header_len, out + prefix, out + prefix + in_len, type,
record_version, dtls_aead_sequence(ssl, record_number), header, in,
in_len, extra_in, extra_in_len)) {
return false;
}
// Perform record number encryption (RFC 9147 section 4.2.3).
if (dtls13_header) {
// Record number encryption uses bytes from the ciphertext as a sample to
// generate the mask used for encryption. For simplicity, pass in the whole
// ciphertext as the sample - GenerateRecordNumberMask will read only what
// it needs (and error if |sample| is too short).
Span<const uint8_t> sample(out + record_header_len, ciphertext_len);
uint8_t mask[2];
if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) {
return false;
}
out[1] ^= mask[0];
out[2] ^= mask[1];
}
*out_number = record_number;
write_epoch->next_record = record_number.Next();
*out_len = record_header_len + ciphertext_len;
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header);
return true;
}
BSSL_NAMESPACE_END