-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathtest_schema.py
236 lines (222 loc) · 7.29 KB
/
test_schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import datetime
import pandas
import pytest
@pytest.fixture
def module_under_test():
import pandas_gbq.schema
return pandas_gbq.schema
@pytest.mark.parametrize(
"original_fields,dataframe_fields",
[
(
[
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "FLOAT64"},
{"name": "C", "type": "STRING"},
],
[
{"name": "A", "type": "FLOAT64"},
{"name": "B", "type": "FLOAT"},
],
),
# Original schema from API may contain legacy SQL datatype names.
# https://github.com/pydata/pandas-gbq/issues/322
(
[{"name": "A", "type": "INTEGER"}],
[{"name": "A", "type": "INT64"}],
),
(
[{"name": "A", "type": "BOOL"}],
[{"name": "A", "type": "BOOLEAN"}],
),
(
# TODO: include sub-fields when struct uploads are supported.
[{"name": "A", "type": "STRUCT"}],
[{"name": "A", "type": "RECORD"}],
),
],
)
def test_schema_is_subset_passes_if_subset(
module_under_test, original_fields, dataframe_fields
):
# Issue #24 schema_is_subset indicates whether the schema of the
# dataframe is a subset of the schema of the bigquery table
table_schema = {"fields": original_fields}
tested_schema = {"fields": dataframe_fields}
assert module_under_test.schema_is_subset(table_schema, tested_schema)
def test_schema_is_subset_fails_if_not_subset(module_under_test):
table_schema = {
"fields": [
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "FLOAT"},
{"name": "C", "type": "STRING"},
]
}
tested_schema = {
"fields": [
{"name": "A", "type": "FLOAT"},
{"name": "C", "type": "FLOAT"},
]
}
assert not module_under_test.schema_is_subset(table_schema, tested_schema)
@pytest.mark.parametrize(
"original_fields,dataframe_fields,expected_difference",
[
(
[
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "FLOAT64"},
{"name": "C", "type": "STRING"},
],
[
{"name": "A", "type": "FLOAT64"},
{"name": "B", "type": "FLOAT"},
],
"Field 'C': no such field in the dataframe.",
),
(
[
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "STRING"},
],
[
{"name": "A", "type": "FLOAT64"},
{"name": "B", "type": "FLOAT"},
],
"Field 'B' has different types: dataframe 'FLOAT', BigQuery 'STRING'.",
),
(
[
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "STRING"},
{"name": "C", "type": "STRING"},
],
[
{"name": "A", "type": "FLOAT64"},
{"name": "B", "type": "FLOAT"},
],
(
"Field 'B' has different types: dataframe 'FLOAT', BigQuery 'STRING'.\n"
"Field 'C': no such field in the dataframe."
),
),
(
[
{"name": "A", "type": "FLOAT"},
{"name": "B", "type": "STRING"},
{"name": "C", "type": "STRING"},
{"name": "D", "type": "STRING"},
{"name": "E", "type": "STRING"},
],
[
{"name": "A", "type": "FLOAT64"},
{"name": "B", "type": "FLOAT"},
],
(
"Field 'B' has different types: dataframe 'FLOAT', BigQuery 'STRING'.\n"
"Field 'C': no such field in the dataframe.\n"
"Field 'D': no such field in the dataframe.\n"
"And 1 more left."
),
),
],
)
def test_schema_difference(
module_under_test, original_fields, dataframe_fields, expected_difference
):
table_schema = {"fields": original_fields}
tested_schema = {"fields": dataframe_fields}
schema_difference = module_under_test.schema_difference(
table_schema, tested_schema
)
assert expected_difference == schema_difference
@pytest.mark.parametrize(
"dataframe,expected_schema",
[
(
pandas.DataFrame(data={"col1": [1, 2, 3]}),
{"fields": [{"name": "col1", "type": "INTEGER"}]},
),
(
pandas.DataFrame(data={"col1": [True, False]}),
{"fields": [{"name": "col1", "type": "BOOLEAN"}]},
),
(
pandas.DataFrame(data={"col1": [1.0, 3.14]}),
{"fields": [{"name": "col1", "type": "FLOAT"}]},
),
(
pandas.DataFrame(data={"col1": [u"hello", u"world"]}),
{"fields": [{"name": "col1", "type": "STRING"}]},
),
(
pandas.DataFrame(data={"col1": [datetime.datetime.now()]}),
{"fields": [{"name": "col1", "type": "TIMESTAMP"}]},
),
(
pandas.DataFrame(
data={
"col1": [datetime.datetime.now()],
"col2": [u"hello"],
"col3": [3.14],
"col4": [True],
"col5": [4],
}
),
{
"fields": [
{"name": "col1", "type": "TIMESTAMP"},
{"name": "col2", "type": "STRING"},
{"name": "col3", "type": "FLOAT"},
{"name": "col4", "type": "BOOLEAN"},
{"name": "col5", "type": "INTEGER"},
]
},
),
],
)
def test_generate_bq_schema(module_under_test, dataframe, expected_schema):
schema = module_under_test.generate_bq_schema(dataframe)
assert schema == expected_schema
@pytest.mark.parametrize(
"schema_old,schema_new,expected_output",
[
(
{"fields": [{"name": "col1", "type": "INTEGER"}]},
{"fields": [{"name": "col2", "type": "TIMESTAMP"}]},
# Ignore fields that aren't in the DataFrame.
{"fields": [{"name": "col1", "type": "INTEGER"}]},
),
(
{"fields": [{"name": "col1", "type": "INTEGER"}]},
{"fields": [{"name": "col1", "type": "BOOLEAN"}]},
# Update type for fields that are in the DataFrame.
{"fields": [{"name": "col1", "type": "BOOLEAN"}]},
),
(
{
"fields": [
{"name": "col1", "type": "INTEGER"},
{"name": "col2", "type": "INTEGER"},
]
},
{
"fields": [
{"name": "col2", "type": "BOOLEAN"},
{"name": "col3", "type": "FLOAT"},
]
},
{
"fields": [
{"name": "col1", "type": "INTEGER"},
{"name": "col2", "type": "BOOLEAN"},
]
},
),
],
)
def test_update_schema(
module_under_test, schema_old, schema_new, expected_output
):
output = module_under_test.update_schema(schema_old, schema_new)
assert output == expected_output