Skip to content

Commit ee11ef6

Browse files
committed
Import upstream code
From golang/go commit #810b08b8ec
1 parent 769425b commit ee11ef6

29 files changed

+16416
-0
lines changed

all_test.go

+945
Large diffs are not rendered by default.

backtrack.go

+367
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,367 @@
1+
// Copyright 2015 The Go Authors. All rights reserved.
2+
// Use of this source code is governed by a BSD-style
3+
// license that can be found in the LICENSE file.
4+
5+
// backtrack is a regular expression search with submatch
6+
// tracking for small regular expressions and texts. It allocates
7+
// a bit vector with (length of input) * (length of prog) bits,
8+
// to make sure it never explores the same (character position, instruction)
9+
// state multiple times. This limits the search to run in time linear in
10+
// the length of the test.
11+
//
12+
// backtrack is a fast replacement for the NFA code on small
13+
// regexps when onepass cannot be used.
14+
15+
package regexp
16+
17+
import (
18+
"regexp/syntax"
19+
"sync"
20+
)
21+
22+
// A job is an entry on the backtracker's job stack. It holds
23+
// the instruction pc and the position in the input.
24+
type job struct {
25+
pc uint32
26+
arg bool
27+
pos int
28+
}
29+
30+
const (
31+
visitedBits = 32
32+
maxBacktrackProg = 500 // len(prog.Inst) <= max
33+
maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
34+
)
35+
36+
// bitState holds state for the backtracker.
37+
type bitState struct {
38+
end int
39+
cap []int
40+
matchcap []int
41+
jobs []job
42+
visited []uint32
43+
44+
inputs inputs
45+
}
46+
47+
var bitStatePool sync.Pool
48+
49+
func newBitState() *bitState {
50+
b, ok := bitStatePool.Get().(*bitState)
51+
if !ok {
52+
b = new(bitState)
53+
}
54+
return b
55+
}
56+
57+
func freeBitState(b *bitState) {
58+
b.inputs.clear()
59+
bitStatePool.Put(b)
60+
}
61+
62+
// maxBitStateLen returns the maximum length of a string to search with
63+
// the backtracker using prog.
64+
func maxBitStateLen(prog *syntax.Prog) int {
65+
if !shouldBacktrack(prog) {
66+
return 0
67+
}
68+
return maxBacktrackVector / len(prog.Inst)
69+
}
70+
71+
// shouldBacktrack reports whether the program is too
72+
// long for the backtracker to run.
73+
func shouldBacktrack(prog *syntax.Prog) bool {
74+
return len(prog.Inst) <= maxBacktrackProg
75+
}
76+
77+
// reset resets the state of the backtracker.
78+
// end is the end position in the input.
79+
// ncap is the number of captures.
80+
func (b *bitState) reset(prog *syntax.Prog, end int, ncap int) {
81+
b.end = end
82+
83+
if cap(b.jobs) == 0 {
84+
b.jobs = make([]job, 0, 256)
85+
} else {
86+
b.jobs = b.jobs[:0]
87+
}
88+
89+
visitedSize := (len(prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
90+
if cap(b.visited) < visitedSize {
91+
b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
92+
} else {
93+
b.visited = b.visited[:visitedSize]
94+
for i := range b.visited {
95+
b.visited[i] = 0
96+
}
97+
}
98+
99+
if cap(b.cap) < ncap {
100+
b.cap = make([]int, ncap)
101+
} else {
102+
b.cap = b.cap[:ncap]
103+
}
104+
for i := range b.cap {
105+
b.cap[i] = -1
106+
}
107+
108+
if cap(b.matchcap) < ncap {
109+
b.matchcap = make([]int, ncap)
110+
} else {
111+
b.matchcap = b.matchcap[:ncap]
112+
}
113+
for i := range b.matchcap {
114+
b.matchcap[i] = -1
115+
}
116+
}
117+
118+
// shouldVisit reports whether the combination of (pc, pos) has not
119+
// been visited yet.
120+
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
121+
n := uint(int(pc)*(b.end+1) + pos)
122+
if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
123+
return false
124+
}
125+
b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
126+
return true
127+
}
128+
129+
// push pushes (pc, pos, arg) onto the job stack if it should be
130+
// visited.
131+
func (b *bitState) push(re *Regexp, pc uint32, pos int, arg bool) {
132+
// Only check shouldVisit when arg is false.
133+
// When arg is true, we are continuing a previous visit.
134+
if re.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) {
135+
b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
136+
}
137+
}
138+
139+
// tryBacktrack runs a backtracking search starting at pos.
140+
func (re *Regexp) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
141+
longest := re.longest
142+
143+
b.push(re, pc, pos, false)
144+
for len(b.jobs) > 0 {
145+
l := len(b.jobs) - 1
146+
// Pop job off the stack.
147+
pc := b.jobs[l].pc
148+
pos := b.jobs[l].pos
149+
arg := b.jobs[l].arg
150+
b.jobs = b.jobs[:l]
151+
152+
// Optimization: rather than push and pop,
153+
// code that is going to Push and continue
154+
// the loop simply updates ip, p, and arg
155+
// and jumps to CheckAndLoop. We have to
156+
// do the ShouldVisit check that Push
157+
// would have, but we avoid the stack
158+
// manipulation.
159+
goto Skip
160+
CheckAndLoop:
161+
if !b.shouldVisit(pc, pos) {
162+
continue
163+
}
164+
Skip:
165+
166+
inst := re.prog.Inst[pc]
167+
168+
switch inst.Op {
169+
default:
170+
panic("bad inst")
171+
case syntax.InstFail:
172+
panic("unexpected InstFail")
173+
case syntax.InstAlt:
174+
// Cannot just
175+
// b.push(inst.Out, pos, false)
176+
// b.push(inst.Arg, pos, false)
177+
// If during the processing of inst.Out, we encounter
178+
// inst.Arg via another path, we want to process it then.
179+
// Pushing it here will inhibit that. Instead, re-push
180+
// inst with arg==true as a reminder to push inst.Arg out
181+
// later.
182+
if arg {
183+
// Finished inst.Out; try inst.Arg.
184+
arg = false
185+
pc = inst.Arg
186+
goto CheckAndLoop
187+
} else {
188+
b.push(re, pc, pos, true)
189+
pc = inst.Out
190+
goto CheckAndLoop
191+
}
192+
193+
case syntax.InstAltMatch:
194+
// One opcode consumes runes; the other leads to match.
195+
switch re.prog.Inst[inst.Out].Op {
196+
case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
197+
// inst.Arg is the match.
198+
b.push(re, inst.Arg, pos, false)
199+
pc = inst.Arg
200+
pos = b.end
201+
goto CheckAndLoop
202+
}
203+
// inst.Out is the match - non-greedy
204+
b.push(re, inst.Out, b.end, false)
205+
pc = inst.Out
206+
goto CheckAndLoop
207+
208+
case syntax.InstRune:
209+
r, width := i.step(pos)
210+
if !inst.MatchRune(r) {
211+
continue
212+
}
213+
pos += width
214+
pc = inst.Out
215+
goto CheckAndLoop
216+
217+
case syntax.InstRune1:
218+
r, width := i.step(pos)
219+
if r != inst.Rune[0] {
220+
continue
221+
}
222+
pos += width
223+
pc = inst.Out
224+
goto CheckAndLoop
225+
226+
case syntax.InstRuneAnyNotNL:
227+
r, width := i.step(pos)
228+
if r == '\n' || r == endOfText {
229+
continue
230+
}
231+
pos += width
232+
pc = inst.Out
233+
goto CheckAndLoop
234+
235+
case syntax.InstRuneAny:
236+
r, width := i.step(pos)
237+
if r == endOfText {
238+
continue
239+
}
240+
pos += width
241+
pc = inst.Out
242+
goto CheckAndLoop
243+
244+
case syntax.InstCapture:
245+
if arg {
246+
// Finished inst.Out; restore the old value.
247+
b.cap[inst.Arg] = pos
248+
continue
249+
} else {
250+
if inst.Arg < uint32(len(b.cap)) {
251+
// Capture pos to register, but save old value.
252+
b.push(re, pc, b.cap[inst.Arg], true) // come back when we're done.
253+
b.cap[inst.Arg] = pos
254+
}
255+
pc = inst.Out
256+
goto CheckAndLoop
257+
}
258+
259+
case syntax.InstEmptyWidth:
260+
flag := i.context(pos)
261+
if !flag.match(syntax.EmptyOp(inst.Arg)) {
262+
continue
263+
}
264+
pc = inst.Out
265+
goto CheckAndLoop
266+
267+
case syntax.InstNop:
268+
pc = inst.Out
269+
goto CheckAndLoop
270+
271+
case syntax.InstMatch:
272+
// We found a match. If the caller doesn't care
273+
// where the match is, no point going further.
274+
if len(b.cap) == 0 {
275+
return true
276+
}
277+
278+
// Record best match so far.
279+
// Only need to check end point, because this entire
280+
// call is only considering one start position.
281+
if len(b.cap) > 1 {
282+
b.cap[1] = pos
283+
}
284+
if old := b.matchcap[1]; old == -1 || (longest && pos > 0 && pos > old) {
285+
copy(b.matchcap, b.cap)
286+
}
287+
288+
// If going for first match, we're done.
289+
if !longest {
290+
return true
291+
}
292+
293+
// If we used the entire text, no longer match is possible.
294+
if pos == b.end {
295+
return true
296+
}
297+
298+
// Otherwise, continue on in hope of a longer match.
299+
continue
300+
}
301+
}
302+
303+
return longest && len(b.matchcap) > 1 && b.matchcap[1] >= 0
304+
}
305+
306+
// backtrack runs a backtracking search of prog on the input starting at pos.
307+
func (re *Regexp) backtrack(ib []byte, is string, pos int, ncap int, dstCap []int) []int {
308+
startCond := re.cond
309+
if startCond == ^syntax.EmptyOp(0) { // impossible
310+
return nil
311+
}
312+
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
313+
// Anchored match, past beginning of text.
314+
return nil
315+
}
316+
317+
b := newBitState()
318+
i, end := b.inputs.init(nil, ib, is)
319+
b.reset(re.prog, end, ncap)
320+
321+
// Anchored search must start at the beginning of the input
322+
if startCond&syntax.EmptyBeginText != 0 {
323+
if len(b.cap) > 0 {
324+
b.cap[0] = pos
325+
}
326+
if !re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
327+
freeBitState(b)
328+
return nil
329+
}
330+
} else {
331+
332+
// Unanchored search, starting from each possible text position.
333+
// Notice that we have to try the empty string at the end of
334+
// the text, so the loop condition is pos <= end, not pos < end.
335+
// This looks like it's quadratic in the size of the text,
336+
// but we are not clearing visited between calls to TrySearch,
337+
// so no work is duplicated and it ends up still being linear.
338+
width := -1
339+
for ; pos <= end && width != 0; pos += width {
340+
if len(re.prefix) > 0 {
341+
// Match requires literal prefix; fast search for it.
342+
advance := i.index(re, pos)
343+
if advance < 0 {
344+
freeBitState(b)
345+
return nil
346+
}
347+
pos += advance
348+
}
349+
350+
if len(b.cap) > 0 {
351+
b.cap[0] = pos
352+
}
353+
if re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
354+
// Match must be leftmost; done.
355+
goto Match
356+
}
357+
_, width = i.step(pos)
358+
}
359+
freeBitState(b)
360+
return nil
361+
}
362+
363+
Match:
364+
dstCap = append(dstCap, b.matchcap...)
365+
freeBitState(b)
366+
return dstCap
367+
}

0 commit comments

Comments
 (0)