-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlifeAIpromptOptimizeAPI.py
executable file
·302 lines (244 loc) · 12.1 KB
/
lifeAIpromptOptimizeAPI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/env python
## Life AI Prompt optimizer
#
# Chris Kennedy 2023 (C) GPL
#
# Free to use for any use as in truly free software
# as Richard Stallman intended it to be.
#
import zmq
import argparse
import json
import time
import traceback
import logging
import requests
import json
import re
import nltk # Import nltk for sentence tokenization
import spacy ## python -m spacy download en_core_web_sm
# Download the Punkt tokenizer models (only needed once)
nltk.download('punkt')
def extract_sensible_sentences(text):
# Load the spaCy model
nlp = spacy.load("en_core_web_sm")
# Process the text with spaCy
doc = nlp(text)
# Filter sentences based on some criteria (e.g., length, structure)
sensible_sentences = [sent.text for sent in doc.sents if len(sent.text.split()) > 3 and is_sensible(sent.text)]
return sensible_sentences
def is_sensible(sentence):
# Implement a basic check for sentence sensibility
# This is a placeholder - you'd need a more sophisticated method for real use
return not bool(re.search(r'\b[a-zA-Z]{20,}\b', sentence))
def clean_text(text):
# Remove URLs
#text = re.sub(r'http[s]?://\S+', '', text)
# Remove image tags or Markdown image syntax
#text = re.sub(r'\!\[.*?\]\(.*?\)', '', text)
#text = re.sub(r'<img.*?>', '', text)
# Remove HTML tags
#text = re.sub(r'<.*?>', '', text)
# Remove any inline code blocks
#text = re.sub(r'`.*?`', '', text)
# Remove any block code segments
#text = re.sub(r'```.*?```', '', text, flags=re.DOTALL)
# Remove special characters and digits (optional, be cautious)
#text = re.sub(r'[^a-zA-Z0-9\s.?,!]', '', text)
# Remove extra whitespace
#text = ' '.join(text.split())
# clean text of [INST], [/INST], <<SYS>>, <</SYS>>, <s>, </s> tags
exclusions = ["[INST]", "[/INST]", "<<SYS>>", "<</SYS>>", "<s>", "</s>"]
for exclusion in exclusions:
text = text.replace(exclusion, "")
# Extract sensible sentences
sensible_sentences = extract_sensible_sentences(text)
text = ' '.join(sensible_sentences)
return text
def get_api_response(api_url, completion_params):
logger.debug(f"promptOptimizerAPI LLM: POST to {api_url} with parameters {completion_params}")
response = requests.request("POST", api_url, data=json.dumps(completion_params))
logger.debug(f"LLM: Response status code: {response.status_code}")
logger.debug(f"LLM: Response text: {response.text}")
if response.status_code != 200:
logger.error(f"Request failed with status code {response.status_code}: {response.text}")
return None
return response.json()
def run_llm(prompt, api_url, args):
optimized_prompt = ""
try:
completion_params = {
'prompt': prompt,
'temperature': args.temperature,
'max_tokens': args.maxtokens,
'n_'
'stream': False,
}
if args.maxtokens:
completion_params['n_predict'] = args.maxtokens
response = None
try:
response = get_api_response(api_url, completion_params)
#response = json.loads(response)
except Exception as e:
logger.error(f"{traceback.print_exc()}")
logger.error(f"LLM exception: {str(e)}")
"""
Response status code: 200
Response text: {"content":"Generate according to: The output from the LLM\n\n
Short Description: A result produced by a language learning model, as requested.",
"generation_settings":{"frequency_penalty":0.0,"grammar":"","ignore_eos":false,
"logit_bias":[],"mirostat":0,"mirostat_eta":0.10000000149011612,"mirostat_tau":5.0,
"model":"/Volumes/BrahmaSSD/LLM/models/GGUF/zephyr-7b-beta.Q8_0.gguf","n_ctx":32768,"n_keep":0,
"n_predict":120,"n_probs":0,"penalize_nl":true,"presence_penalty":0.0,"repeat_last_n":64,
"repeat_penalty":1.100000023841858,"seed":4294967295,"stop":["Question:"],"stream":false,
"temp":0.4000000059604645,"tfs_z":1.0,"top_k":40,"top_p":0.8999999761581421,"typical_p":1.0},
"model":"/Volumes/BrahmaSSD/LLM/models/GGUF/zephyr-7b-beta.Q8_0.gguf",
"prompt":"Take the ImageDescription and summarize it into a short 2 sentence description of under 200 tokens for image generation from the ImagePrompt.\n\nImageDescription: The output from the LLM\nImagePrompt:",
"slot_id":0,"stop":true,"stopped_eos":true,"stopped_limit":false,"stopped_word":false,"stopping_word":"",
"timings":{"predicted_ms":961.919,"predicted_n":27,"predicted_per_second":28.068891455517566,
"predicted_per_token_ms":35.626629629629626,"prompt_ms":64.421,"prompt_n":0,"prompt_per_second":0.0,
"prompt_per_token_ms":null},"tokens_cached":75,"tokens_evaluated":48,"tokens_predicted":27,"truncated":false}
"""
# Confirm we have an image prompt
if response and 'content' in response:
optimized_prompt = clean_text(response["content"])
logger.info(f"promptOptimizeAPI: LLM response: '{optimized_prompt}'")
else:
logger.error(f"Error! LLM prompt generation failed: '{response}'")
optimized_prompt = ""
except Exception as e:
logger.error(f"{traceback.print_exc()}")
logger.error(f"LLM exception: {str(e)}")
return optimized_prompt
def main():
prompt = args.prompt_template.format(topic=args.topic)
current_text_array = []
combined_header_message = None
in_combine = False
while True:
# Receive a message
header_message = receiver.recv_json()
if not header_message:
logger.error("Error! No message received.")
time.sleep(1)
continue
text = ""
message = ""
if "text" in header_message:
text = clean_text(header_message["text"])[:1024]
text = clean_text(text)
else:
logger.error(f"Error! No text in message: {header_message}")
continue
if "message" in header_message:
message = header_message["message"][:80]
mediaid = header_message["mediaid"]
timestamp = header_message["timestamp"]
segment_number = header_message["segment_number"]
md5sum = header_message["md5sum"]
logger.debug(f"Prompt optimizer received header: {header_message}")
logger.info(f" Prompt optimizer for {mediaid} #{segment_number} {timestamp} {md5sum} '{message}' - {text}")
if args.passthrough:
logger.info(f"Passing through message for {mediaid} #{segment_number} {timestamp} {md5sum} - {text}")
header_message["optimized_text"] = text
sender.send_json(header_message)
continue
# check if enabled and combine prompts, once we have enough then we send them combined
if args.combine_count > 1:
current_text_array.append(text)
if len(current_text_array) < args.combine_count:
if not in_combine:
combined_header_message = header_message.copy()
else:
if 'merged_packets' in combined_header_message:
combined_header_message["merged_count"] += 1
combined_header_message["merged_packets"].append(header_message)
else:
combined_header_message["merged_count"] = 0
combined_header_message["merged_packets"] = [header_message]
in_combine = True
continue
else:
text = " ".join(current_text_array)
current_text_array = []
full_prompt = f"<s>[INST]<<SYS>>{prompt}<</SYS>>[/INST]</s><s>[INST]User: {message} - {text}[/INST]\nAssistant: "
optimized_prompt = ""
try:
full_prompt_str = full_prompt.replace('\n','')
logger.info(f"Prompt optimizer: sending text to LLM - {full_prompt_str}")
optimized_prompt = run_llm(full_prompt, api_endpoint, args)
if not optimized_prompt.strip():
logger.error(f"Error! prompt generation generated an empty prompt, using original.")
optimized_prompt = ""
except Exception as e:
traceback.print_exc()
logger.error(f"Error! prompt generation llm failed with exception: %s" % str(e))
optimized_prompt = ""
# Add optimized prompt
if optimized_prompt:
header_message["optimized_text"] = clean_text(optimized_prompt)
# if we combined text, then we need to send the original text as well
if args.combine_count > 1:
header_message["text"] = text
# Send the processed message
sender.send_json(header_message)
optimized_prompt_str = optimized_prompt.replace('\n','')
logger.info(f"Optimized: {mediaid} #{segment_number} {timestamp} {md5sum} - {optimized_prompt_str}")
if __name__ == "__main__":
prompt_template = "Create a short description of the following text summarized for generating {topic}: "
parser = argparse.ArgumentParser()
parser.add_argument("--llm_port", type=int, default=8080)
parser.add_argument("--llm_host", type=str, default="127.0.0.1")
parser.add_argument("--input_host", type=str, default="127.0.0.1")
parser.add_argument("--input_port", type=int, default=2000)
parser.add_argument("--output_host", type=str, default="127.0.0.1")
parser.add_argument("--output_port", type=int, default=3001)
parser.add_argument("--topic", type=str, default="image",
help="Topic to use for image generation, default 'image generation'")
parser.add_argument("--maxtokens", type=int, default=200)
parser.add_argument("--context", type=int, default=4096)
parser.add_argument("--temperature", type=float, default=0.8)
parser.add_argument("-d", "--debug", action="store_true", default=False)
parser.add_argument("--qprompt", type=str, default="User",
help="Prompt to use for image generation, default Text")
parser.add_argument("--aprompt", type=str, default="Assistant",
help="Prompt to use for image generation, default Description")
parser.add_argument("-ll", "--loglevel", type=str, default="info", help="Logging level: debug, info...")
parser.add_argument("--no_cache_prompt", action='store_true', help="Flag to disable caching of prompts.")
parser.add_argument("--combine_count", type=int, default=0, help="Number of messages to combine into one prompt.")
parser.add_argument("--passthrough", action="store_true", default=False, help="Pass through messages without optimizing.")
parser.add_argument("--prompt_template", type=str, default=prompt_template,
help=f"Prompt template to use for image generation, default {prompt_template}")
args = parser.parse_args()
api_endpoint = f"http://{args.llm_host}:{args.llm_port}/completion"
LOGLEVEL = logging.INFO
if args.loglevel == "info":
LOGLEVEL = logging.INFO
elif args.loglevel == "debug":
LOGLEVEL = logging.DEBUG
elif args.loglevel == "warning":
LOGLEVEL = logging.WARNING
else:
LOGLEVEL = logging.INFO
log_id = time.strftime("%Y%m%d-%H%M%S")
logging.basicConfig(filename=f"logs/promptOptimizeAPI-{log_id}.log", level=LOGLEVEL)
logger = logging.getLogger('promptOptimizeAPI')
ch = logging.StreamHandler()
ch.setLevel(LOGLEVEL)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
context = zmq.Context()
receiver = None
sender = None
# Set up the subscriber
receiver = context.socket(zmq.SUB)
print(f"Setup ZMQ in {args.input_host}:{args.input_port}")
receiver.connect(f"tcp://{args.input_host}:{args.input_port}")
receiver.setsockopt_string(zmq.SUBSCRIBE, "")
# Set up the publisher
sender = context.socket(zmq.PUB)
print(f"binded to ZMQ out {args.output_host}:{args.output_port}")
sender.bind(f"tcp://{args.output_host}:{args.output_port}")
main()