-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlifeAItti.py
executable file
·434 lines (363 loc) · 17.5 KB
/
lifeAItti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python
## Life AI Stable Diffusion module
#
# Chris Kennedy 2023 (C) GPL
#
# Free to use for any use as in truly free software
# as Richard Stallman intended it to be.
#
import zmq
import argparse
import io
from diffusers import StableDiffusionPipeline
import torch
from transformers import logging as trlogging
import re
import logging
import time
from openai import OpenAI
import base64
from dotenv import load_dotenv
import os
import requests
import webuiapi
load_dotenv()
def save_image(data, file_path, save_file=False):
# Strip out the header of the base64 string if present
if ',' in data:
header, data = data.split(',', 1)
image = base64.b64decode(data)
if save_file:
with open(file_path, "wb") as fh:
fh.write(image)
return image
def generate_getimgai(mediaid, image_model, prompt):
url = "https://api.getimg.ai/v1/stable-diffusion/text-to-image"
payload = {
"model": "stable-diffusion-v1-5",
"prompt": prompt,
"negative_prompt": "Disfigured, cartoon, blurry",
"width": 512,
"height": 512,
"steps": 25,
"guidance": 7.5,
"seed": 0,
"scheduler": "dpmsolver++",
"output_format": "png"
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": os.environ['GETIMG_API_KEY']
}
try:
response = requests.post(url, json=payload, headers=headers)
print(response.image)
return response.image
except Exception as e:
print(f"Error generating image: {e}")
return None
def generate_sd_webui(mediaid, prompt, save_file=False):
try:
result = sdui_api.txt2img(prompt=prompt,
negative_prompt=args.negative_prompt,
save_images=False,
width=512,
height=512,
#steps=25,
#cfg_scale=7.5,
# seed=1003,
# styles=["anime"],
# cfg_scale=7,
# sampler_index='DDIM',
# steps=30,
# enable_hr=True,
# hr_scale=2,
# hr_upscaler=webuiapi.HiResUpscaler.Latent,
# hr_second_pass_steps=20,
# hr_resize_x=1536,
# hr_resize_y=1024,
# denoising_strength=0.4,
)
sdui_api.util_wait_for_ready()
if result.image is not None:
if save_file:
result.image.save(f"images/{mediaid}.png")
logger.info(f"Saved image to images/{mediaid}.png")
print(f"Saved image to images/{mediaid}.png")
else:
logger.error(f"Error generating image: {result.error}")
return None
return result.image
except Exception as e:
logger.error(f"Error generating image: {e}")
return None
def generate_openai(mediaid, image_model, prompt, username="lifeai", return_url=False, save_file=False):
response = openai_client.images.generate(
model=image_model,
prompt=prompt,
size=f"{args.width}x{args.height}",
quality=args.quality,
style=args.style,
response_format="b64_json",
user=username,
n=1,
)
logger.debug(f"{response.data[0]}")
image_url = response.data[0].url
b64_json = response.data[0].b64_json
revised_prompt = response.data[0].revised_prompt
logger.info(f"OpenAI revised prompt: {revised_prompt}")
image = save_image(b64_json, f"images/{mediaid}.png", save_file)
if return_url:
print(f"got url: {image_url}")
return image
trlogging.set_verbosity_error()
def clean_text(text):
# Remove URLs
text = re.sub(r'http[s]?://\S+', '', text)
# Remove image tags or Markdown image syntax
text = re.sub(r'\!\[.*?\]\(.*?\)', '', text)
text = re.sub(r'<img.*?>', '', text)
# Remove HTML tags
text = re.sub(r'<.*?>', '', text)
# Remove any inline code blocks
text = re.sub(r'`.*?`', '', text)
# Remove any block code segments
text = re.sub(r'```.*?```', '', text, flags=re.DOTALL)
# Remove special characters and digits (optional, be cautious)
text = re.sub(r'[^a-zA-Z0-9\s.?,!\n]', '', text)
# This seems to provoke some questionable images :/
text = text.replace("black friday", "good friday").replace("Black Friday", "good friday").replace("black Friday", "good friday").replace("Black friday", "good friday")
# Remove extra whitespace
text = ' '.join(text.split())
return text
def main():
last_image = None
last_image_time = 0
retry = False
latency = 0
max_latency = args.max_latency
throttle = False
header_message = None
skipped_messages = 0
while True:
if throttle and args.max_latency > 0:
start = time.time()
combine_time = 0
if max_latency > 0:
combine_time = max(0, (latency / 1000) - max_latency)
# read and combine the messages for 60 seconds into a single message
priority = 0
while max_latency > 0 and time.time() - start < combine_time:
header_message = receiver.recv_json()
header_message["stream"] = "image"
header_message["throttle"] = "true"
if 'priority' in header_message:
priority = header_message["priority"]
if priority == 100:
retry = True # keep header and continue with this message on loop
break
sender.send_json(header_message, zmq.SNDMORE)
sender.send(last_image)
logger.info(f"TTI: Throttling for {combine_time} seconds.")
# Receive a message
if retry:
logger.error(f"Retrying...")
retry = False
else:
header_message = receiver.recv_json()
# get variables from header
mediaid = header_message["mediaid"]
segment_number = header_message["segment_number"]
header_message["throttle"] = "false"
optimized_prompt = ""
if "optimized_text" in header_message and header_message["optimized_text"] != "":
optimized_prompt = header_message["optimized_text"]
else:
optimized_prompt = header_message["text"]
logger.warning(f"TTI: No optimized text, using original text.")
# genre
genre = args.genre
if "genre" in header_message and header_message["genre"] != "":
genre = header_message["genre"]
image = None
speaker_pattern = r'(?:(?:\[/INST\])?<<([A-Za-z0-9_\)\(\-]+)>>|^(?:\[\w+\])?([A-Za-z0-9_\)\(\-)]+):)'
speaker_line = False
speaker_name = ""
# Find speaker names in the text and derive gender from name, setup speaker map
for line in optimized_prompt.split('\n'):
speaker_match = re.search(speaker_pattern, line)
if speaker_match:
# Extracting speaker name from either of the capturing groups
new_speaker = speaker_match.group(1) or speaker_match.group(2)
new_speaker = new_speaker.strip()
new_speaker = new_speaker.lower()
speaker_line = True
speaker_name = new_speaker
break
# Clean text
optimized_prompt_clean = clean_text(optimized_prompt)
# create prompt
optimized_prompt_final = f"{speaker_name} {genre[:10]} {header_message['message'][:10]} {optimized_prompt_clean[:200]}"
logger.debug(
f"Text to Image recieved optimized prompt:\n{header_message}.")
logger.info(
f"Text to Image using text as prompt #{segment_number}:\n - {optimized_prompt_final[:80]}...")
priority = 0
if priority in header_message:
priority = header_message["priority"]
if (priority == 100 or skipped_messages >= args.skipped_messages or speaker_line or last_image == None) and (args.wait_time == 0 or last_image == None or time.time() - last_image_time >= args.wait_time):
skipped_messages = 0
if args.service == "openai":
image = generate_openai(mediaid, args.oai_image_model, optimized_prompt_final, header_message["username"], args.save_images)
elif args.service == "sdwebui":
start_time = time.time()
image = generate_sd_webui(mediaid, optimized_prompt_final, args.save_images)
end_time = time.time()
logger.info(f"Image generation took {end_time - start_time} seconds.")
elif args.service == "getimgai":
image = generate_getimgai(mediaid, args.sdwebui_image_model, optimized_prompt_final)
else:
if args.extend_prompt:
max_length = pipe.tokenizer.model_max_length
# 3. Forward
input_ids = pipe.tokenizer(optimized_prompt_final, return_tensors="pt").input_ids
input_ids = input_ids.to("mps")
negative_ids = pipe.tokenizer("", truncation=False, padding="max_length", max_length=input_ids.shape[-1], return_tensors="pt").input_ids
negative_ids = negative_ids.to("mps")
concat_embeds = []
neg_embeds = []
for i in range(0, input_ids.shape[-1], max_length):
concat_embeds.append(pipe.text_encoder(input_ids[:, i: i + max_length])[0])
neg_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0])
prompt_embeds = torch.cat(concat_embeds, dim=1)
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
# 2. Forward embeddings and negative embeddings through text encoder
image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds).images[0]
else:
image = pipe(optimized_prompt_final).images[0]
if image != None:
if args.service != "openai": # and args.service != "sdwebui":
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG') # Save it as PNG or JPEG depending on your preference
image = img_byte_arr.getvalue()
#elif args.service == "sdwebui":
# image = image.copy()
# check if image is more than 75k
if args.service != "openai" and args.service != "sdwebui" and len(image) < 75000:
logger.error(f"Image is too small, retrying...")
retry = True
continue
last_image = image
last_image_time = time.time()
else:
logger.error(f"Error generating image, retrying...")
retry = True
continue
else:
header_message["throttle"] = "true"
skipped_messages += 1
header_message["stream"] = "image"
sender.send_json(header_message, zmq.SNDMORE)
sender.send(last_image)
logger.info(f"Text to Image sent image #{segment_number} {header_message['timestamp']} of {len(last_image)} bytes.")
# measure latency and see if we need to throttle output
if args.service != "openai":
latency = round(time.time() * 1000) - header_message['timestamp']
if latency > (max_latency * 1000) and max_latency > 0:
logger.error(f"TTI: Message is too old {latency/1000}, throttling for the next{latency/1000} seconds.")
throttle = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_port", type=int, default=2000, required=False, help="Port for receiving text input")
parser.add_argument("--output_port", type=int, default=6002, required=False, help="Port for sending image output")
parser.add_argument("--input_host", type=str, default="127.0.0.1", required=False, help="Port for receiving text input")
parser.add_argument("--output_host", type=str, default="127.0.0.1", required=False, help="Port for sending image output")
parser.add_argument("--nsfw", action="store_true", default=False, help="Disable NSFW filters, caution!!!")
parser.add_argument("--metal", action="store_true", default=False, help="offload to metal mps GPU")
parser.add_argument("--cuda", action="store_true", default=False, help="offload to metal cuda GPU")
parser.add_argument("-ll", "--loglevel", type=str, default="info", help="Logging level: debug, info...")
parser.add_argument("--hg_model", type=str, default="runwayml/stable-diffusion-v1-5", help="Huggingface Model ID to use, default unwayml/stable-diffusion-v1-5")
parser.add_argument("--wait_time", type=int, default=0, help="Time in seconds to wait between image generations")
parser.add_argument("--extend_prompt", action="store_true", help="Extend prompt past 77 token limit.")
parser.add_argument("--max_latency", type=int, default=0, help="Max latency for messages before they are throttled / combined")
parser.add_argument("--service", type=str, default="sdwebui", help="Service to use for image generation: huggingface, openai, sdwebui, getimgai")
parser.add_argument("--save_images", action="store_true", help="Save images to disk")
parser.add_argument("--oai_image_model", type=str, default="dall-e-2", help="OpenAI image model to use")
parser.add_argument("--sdwebui_image_model", type=str, default="sd_xl_turbo", help="Local SD WebUI API Image model to use, default protogenV2")
parser.add_argument("--width", type=int, default=512, help="Image width")
parser.add_argument("--height", type=int, default=512, help="Image height")
parser.add_argument("--style", type=str, default="vivid", help="Image style for dalle-3, standard or vivid")
parser.add_argument("--quality", type=str, default="standard", help="Image quality for dalle-3, standard or hd")
parser.add_argument("--webui_url", type=str, default="127.0.0.1:7860", help="URL for webui, default 127.0.0.1:7860")
parser.add_argument("--genre", type=str, default="", help="Genre for the model")
parser.add_argument("--negative_prompt", type=str, default="Disfigured, cartoon, blurry, nsfw, naked, porn, violence, gore, racism, black face", help="Negative prompt for the model")
parser.add_argument("--skipped_messages", type=int, default=0, help="Number of messages to skip before processing")
args = parser.parse_args()
LOGLEVEL = logging.INFO
if args.loglevel == "info":
LOGLEVEL = logging.INFO
elif args.loglevel == "debug":
LOGLEVEL = logging.DEBUG
elif args.loglevel == "warning":
LOGLEVEL = logging.WARNING
else:
LOGLEVEL = logging.INFO
log_id = time.strftime("%Y%m%d-%H%M%S")
logging.basicConfig(filename=f"logs/tti-{log_id}.log", level=LOGLEVEL)
logger = logging.getLogger('TTI')
ch = logging.StreamHandler()
ch.setLevel(LOGLEVEL)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
model_id = args.hg_model
## Disable NSFW filters
pipe = None
if args.service == "huggingface":
if args.nsfw:
pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch.float16,
safety_checker = None,
requires_safety_checker = False)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
## Offload to GPU Metal
if args.metal:
pipe = pipe.to("mps")
elif args.cuda:
pipe = pipe.to("cuda")
else:
pipe = pipe.to("mps")
sdui_api = None
if args.service == "sdwebui":
# create API client with custom host, port
host, port = args.webui_url.split(":")
sdui_api = webuiapi.WebUIApi(
host='127.0.0.1',
port=7860,
use_https=False)
if args.loglevel == "debug":
sdui_api.refresh_checkpoints()
models = sdui_api.util_get_model_names()
print(f"Available models: {models}")
current_model = sdui_api.util_get_current_model()
print(f"Current model: {current_model} requested model: {args}")
logger.info(f"Current model: {current_model} requested model: {args.sdwebui_image_model}")
sdui_api.util_set_model(args.sdwebui_image_model)
openai_client = None
if args.service == "openai":
openai_client = OpenAI()
if args.wait_time == 0:
args.wait_time = 60
context = zmq.Context()
receiver = context.socket(zmq.SUB)
logger.info("connected to ZMQ in: %s:%d" % (args.input_host, args.input_port))
receiver.connect(f"tcp://{args.input_host}:{args.input_port}")
receiver.setsockopt_string(zmq.SUBSCRIBE, "")
sender = context.socket(zmq.PUSH)
logger.info("binded to ZMQ out: %s:%d" % (args.output_host, args.output_port))
sender.connect(f"tcp://{args.output_host}:{args.output_port}")
main()