|
| 1 | +from typing import Tuple |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch.autograd import Function |
| 5 | +import torch.nn as nn |
| 6 | + |
| 7 | +try: |
| 8 | + import pointops_cuda |
| 9 | +except ImportError: |
| 10 | + import warnings |
| 11 | + import os |
| 12 | + from torch.utils.cpp_extension import load |
| 13 | + |
| 14 | + warnings.warn("Unable to load pointops_cuda cpp extension.") |
| 15 | + pointops_cuda_src = os.path.join(os.path.dirname(__file__), "../src") |
| 16 | + pointops_cuda = load('pointops_cuda', [ |
| 17 | + pointops_cuda_src + '/pointops_api.cpp', |
| 18 | + pointops_cuda_src + '/knnquery/knnquery_cuda.cpp', |
| 19 | + pointops_cuda_src + '/knnquery/knnquery_cuda_kernel.cu', |
| 20 | + pointops_cuda_src + '/interpolation/interpolation_cuda.cpp', |
| 21 | + pointops_cuda_src + '/interpolation/interpolation_cuda_kernel.cu', |
| 22 | + pointops_cuda_src + '/sampling/sampling_cuda.cpp', |
| 23 | + pointops_cuda_src + '/sampling/sampling_cuda_kernel.cu', |
| 24 | + pointops_cuda_src + '/subtraction/subtraction_cuda.cpp', |
| 25 | + pointops_cuda_src + '/subtraction/subtraction_cuda_kernel.cu', |
| 26 | + pointops_cuda_src + '/aggregation/aggregation_cuda.cpp', |
| 27 | + pointops_cuda_src + '/aggregation/aggregation_cuda_kernel.cu', |
| 28 | + ], build_directory=pointops_cuda_src, verbose=False) |
| 29 | + |
| 30 | + |
| 31 | +class FurthestSampling(Function): |
| 32 | + @staticmethod |
| 33 | + def forward(ctx, xyz, offset, new_offset): |
| 34 | + """ |
| 35 | + input: xyz: (n, 3), offset: (b), new_offset: (b) |
| 36 | + output: idx: (m) |
| 37 | + """ |
| 38 | + assert xyz.is_contiguous() |
| 39 | + n, b, n_max = xyz.shape[0], offset.shape[0], offset[0] |
| 40 | + for i in range(1, b): |
| 41 | + n_max = max(offset[i] - offset[i - 1], n_max) |
| 42 | + idx = torch.cuda.IntTensor(new_offset[b - 1].item()).zero_() |
| 43 | + tmp = torch.cuda.FloatTensor(n).fill_(1e10) |
| 44 | + pointops_cuda.furthestsampling_cuda(b, n_max, xyz, offset, new_offset, tmp, idx) |
| 45 | + del tmp |
| 46 | + return idx |
| 47 | + |
| 48 | + |
| 49 | +furthestsampling = FurthestSampling.apply |
| 50 | + |
| 51 | + |
| 52 | +class SectorizedFurthestSampling(Function): |
| 53 | + @staticmethod |
| 54 | + def forward(ctx, xyz, offset, new_offset, num_sectors, min_points=10000): |
| 55 | + """ |
| 56 | + input: xyz: (n, 3), offset: (b), new_offset: (b) |
| 57 | + output: idx: (m) |
| 58 | + """ |
| 59 | + assert xyz.is_contiguous() |
| 60 | + |
| 61 | + # cut into batches |
| 62 | + last_offset = 0 |
| 63 | + sizes = [] |
| 64 | + new_sizes = [] |
| 65 | + indices = [] |
| 66 | + for i in range(offset.shape[0]): |
| 67 | + size = offset[i] - last_offset |
| 68 | + if size < min_points: |
| 69 | + tmp_num_sectors = 1 |
| 70 | + else: |
| 71 | + tmp_num_sectors = num_sectors |
| 72 | + batch_xyz = xyz[last_offset:last_offset + size] |
| 73 | + angle = torch.atan2(batch_xyz[:, 0], batch_xyz[:, 1]) # [0, 2*pi] |
| 74 | + sector_range = torch.linspace(angle.min(), angle.max() + 1e-4, tmp_num_sectors + 1) |
| 75 | + for s in range(tmp_num_sectors): |
| 76 | + indices.append( |
| 77 | + torch.where((angle >= sector_range[s]) & (angle < sector_range[s + 1]))[0] + last_offset |
| 78 | + ) |
| 79 | + sizes.append(indices[-1].shape[0]) |
| 80 | + if i > 0: |
| 81 | + new_size = (new_offset[i] - new_offset[i - 1]).item() |
| 82 | + else: |
| 83 | + new_size = new_offset[i].item() |
| 84 | + new_sizes_this_batch = [new_size // tmp_num_sectors for i in range(tmp_num_sectors)] |
| 85 | + new_sizes_this_batch[-1] += new_size % tmp_num_sectors |
| 86 | + new_sizes += new_sizes_this_batch |
| 87 | + last_offset = offset[i] |
| 88 | + |
| 89 | + sizes = torch.tensor(sizes, dtype=torch.long).to(offset) |
| 90 | + sector_offset = sizes.cumsum(dim=0) |
| 91 | + new_sizes = torch.tensor(new_sizes, dtype=torch.long).to(offset) |
| 92 | + new_sector_offset = new_sizes.cumsum(dim=0) |
| 93 | + indices = torch.cat(indices).long().to(offset.device) |
| 94 | + sector_xyz = xyz[indices].contiguous() |
| 95 | + |
| 96 | + # transform to sectors |
| 97 | + new_xyz = [] |
| 98 | + n, b, n_max = sector_xyz.shape[0], sector_offset.shape[0], sector_offset[0] |
| 99 | + for i in range(1, b): |
| 100 | + n_max = max(sector_offset[i] - sector_offset[i - 1], n_max) |
| 101 | + idx = torch.cuda.IntTensor(new_sector_offset[b - 1].item()).zero_() |
| 102 | + tmp = torch.cuda.FloatTensor(n).fill_(1e10) |
| 103 | + pointops_cuda.furthestsampling_cuda(b, n_max, sector_xyz, sector_offset.int(), new_sector_offset.int(), tmp, |
| 104 | + idx) |
| 105 | + idx = indices[idx.long()] |
| 106 | + del tmp |
| 107 | + del sector_xyz |
| 108 | + return idx |
| 109 | + |
| 110 | + |
| 111 | +sectorized_fps = SectorizedFurthestSampling.apply |
| 112 | + |
| 113 | + |
| 114 | +class KNNQuery(Function): |
| 115 | + @staticmethod |
| 116 | + def forward(ctx, nsample, xyz, new_xyz, offset, new_offset): |
| 117 | + """ |
| 118 | + input: xyz: (n, 3), new_xyz: (m, 3), offset: (b), new_offset: (b) |
| 119 | + output: idx: (m, nsample), dist2: (m, nsample) |
| 120 | + """ |
| 121 | + if new_xyz is None: new_xyz = xyz |
| 122 | + assert xyz.is_contiguous() and new_xyz.is_contiguous() |
| 123 | + m = new_xyz.shape[0] |
| 124 | + idx = torch.cuda.IntTensor(m, nsample).zero_() |
| 125 | + dist2 = torch.cuda.FloatTensor(m, nsample).zero_() |
| 126 | + pointops_cuda.knnquery_cuda(m, nsample, xyz, new_xyz, offset, new_offset, idx, dist2) |
| 127 | + return idx, torch.sqrt(dist2) |
| 128 | + |
| 129 | + |
| 130 | +knnquery = KNNQuery.apply |
| 131 | + |
| 132 | + |
| 133 | +class Grouping(Function): |
| 134 | + @staticmethod |
| 135 | + def forward(ctx, input, idx): |
| 136 | + """ |
| 137 | + input: input: (n, c), idx : (m, nsample) |
| 138 | + output: (m, nsample, c) |
| 139 | + """ |
| 140 | + assert input.is_contiguous() and idx.is_contiguous() |
| 141 | + m, nsample, n, c = idx.shape[0], idx.shape[1], input.shape[0], input.shape[1] |
| 142 | + output = torch.cuda.FloatTensor(m, nsample, c) |
| 143 | + pointops_cuda.grouping_forward_cuda(m, nsample, c, input, idx, output) |
| 144 | + ctx.n = n |
| 145 | + ctx.save_for_backward(idx) |
| 146 | + return output |
| 147 | + |
| 148 | + @staticmethod |
| 149 | + def backward(ctx, grad_output): |
| 150 | + """ |
| 151 | + input: grad_out: (m, c, nsample) |
| 152 | + output: (n, c), None |
| 153 | + """ |
| 154 | + n = ctx.n |
| 155 | + idx, = ctx.saved_tensors |
| 156 | + m, nsample, c = grad_output.shape |
| 157 | + grad_input = torch.cuda.FloatTensor(n, c).zero_() |
| 158 | + pointops_cuda.grouping_backward_cuda(m, nsample, c, grad_output, idx, grad_input) |
| 159 | + return grad_input, None |
| 160 | + |
| 161 | + |
| 162 | +grouping = Grouping.apply |
| 163 | + |
| 164 | + |
| 165 | +def queryandgroup(nsample, xyz, new_xyz, feat, idx, offset, new_offset, use_xyz=True): |
| 166 | + """ |
| 167 | + input: xyz: (n, 3), new_xyz: (m, 3), feat: (n, c), idx: (m, nsample), offset: (b), new_offset: (b) |
| 168 | + output: new_feat: (m, c+3, nsample), grouped_idx: (m, nsample) |
| 169 | + """ |
| 170 | + assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() |
| 171 | + if new_xyz is None: |
| 172 | + new_xyz = xyz |
| 173 | + if idx is None: |
| 174 | + idx, _ = knnquery(nsample, xyz, new_xyz, offset, new_offset) # (m, nsample) |
| 175 | + |
| 176 | + n, m, c = xyz.shape[0], new_xyz.shape[0], feat.shape[1] |
| 177 | + grouped_xyz = xyz[idx.view(-1).long(), :].view(m, nsample, 3) # (m, nsample, 3) |
| 178 | + # grouped_xyz = grouping(xyz, idx) # (m, nsample, 3) |
| 179 | + grouped_xyz -= new_xyz.unsqueeze(1) # (m, nsample, 3) |
| 180 | + grouped_feat = feat[idx.view(-1).long(), :].view(m, nsample, c) # (m, nsample, c) |
| 181 | + # grouped_feat = grouping(feat, idx) # (m, nsample, c) |
| 182 | + |
| 183 | + if use_xyz: |
| 184 | + return torch.cat((grouped_xyz, grouped_feat), -1) # (m, nsample, 3+c) |
| 185 | + else: |
| 186 | + return grouped_feat |
| 187 | + |
| 188 | + |
| 189 | +class Subtraction(Function): |
| 190 | + @staticmethod |
| 191 | + def forward(ctx, input1, input2, idx): |
| 192 | + """ |
| 193 | + input: input1: (n, c), input2: (n, c), idx: (n, nsample) |
| 194 | + output: (n, nsample, c) |
| 195 | + """ |
| 196 | + assert input1.is_contiguous() and input2.is_contiguous() |
| 197 | + n, c = input1.shape; |
| 198 | + nsample = idx.shape[-1] |
| 199 | + output = torch.cuda.FloatTensor(n, nsample, c).zero_() |
| 200 | + pointops_cuda.subtraction_forward_cuda(n, nsample, c, input1, input2, idx, output) |
| 201 | + ctx.save_for_backward(idx) |
| 202 | + return output |
| 203 | + |
| 204 | + @staticmethod |
| 205 | + def backward(ctx, grad_output): |
| 206 | + """ |
| 207 | + input: grad_out: (n, nsample, c) |
| 208 | + output: grad_input1: (n, c), grad_input2: (n, c) |
| 209 | + """ |
| 210 | + idx, = ctx.saved_tensors |
| 211 | + n, nsample, c = grad_output.shape |
| 212 | + grad_input1 = torch.cuda.FloatTensor(n, c).zero_() |
| 213 | + grad_input2 = torch.cuda.FloatTensor(n, c).zero_() |
| 214 | + pointops_cuda.subtraction_backward_cuda(n, nsample, c, idx, grad_output, grad_input1, grad_input2) |
| 215 | + return grad_input1, grad_input2, None |
| 216 | + |
| 217 | + |
| 218 | +subtraction = Subtraction.apply |
| 219 | + |
| 220 | + |
| 221 | +class Aggregation(Function): |
| 222 | + @staticmethod |
| 223 | + def forward(ctx, input, position, weight, idx): |
| 224 | + """ |
| 225 | + input: input: (n, c), position: (n, nsample, c), weight : (n, nsample, c'), idx: (n, nsample) |
| 226 | + output: (n, c) |
| 227 | + """ |
| 228 | + assert input.is_contiguous() and position.is_contiguous() and weight.is_contiguous() |
| 229 | + n, nsample, c = position.shape; |
| 230 | + w_c = weight.shape[-1] |
| 231 | + output = torch.cuda.FloatTensor(n, c).zero_() |
| 232 | + pointops_cuda.aggregation_forward_cuda(n, nsample, c, w_c, input, position, weight, idx, output) |
| 233 | + ctx.save_for_backward(input, position, weight, idx) |
| 234 | + return output |
| 235 | + |
| 236 | + @staticmethod |
| 237 | + def backward(ctx, grad_output): |
| 238 | + """ |
| 239 | + input: grad_out: (n, c) |
| 240 | + output: grad_input: (n, c), grad_position: (n, nsample, c), grad_weight : (n, nsample, c') |
| 241 | + """ |
| 242 | + input, position, weight, idx = ctx.saved_tensors |
| 243 | + n, nsample, c = position.shape; |
| 244 | + w_c = weight.shape[-1] |
| 245 | + grad_input = torch.cuda.FloatTensor(n, c).zero_() |
| 246 | + grad_position = torch.cuda.FloatTensor(n, nsample, c).zero_() |
| 247 | + grad_weight = torch.cuda.FloatTensor(n, nsample, w_c).zero_() |
| 248 | + pointops_cuda.aggregation_backward_cuda(n, nsample, c, w_c, input, position, weight, idx, grad_output, |
| 249 | + grad_input, grad_position, grad_weight) |
| 250 | + return grad_input, grad_position, grad_weight, None |
| 251 | + |
| 252 | + |
| 253 | +aggregation = Aggregation.apply |
| 254 | + |
| 255 | + |
| 256 | +def interpolation(xyz, new_xyz, feat, offset, new_offset, k=3): |
| 257 | + """ |
| 258 | + input: xyz: (m, 3), new_xyz: (n, 3), feat: (m, c), offset: (b), new_offset: (b) |
| 259 | + output: (n, c) |
| 260 | + """ |
| 261 | + assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() |
| 262 | + idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) # (n, 3), (n, 3) |
| 263 | + dist_recip = 1.0 / (dist + 1e-8) # (n, 3) |
| 264 | + norm = torch.sum(dist_recip, dim=1, keepdim=True) |
| 265 | + weight = dist_recip / norm # (n, 3) |
| 266 | + |
| 267 | + new_feat = torch.cuda.FloatTensor(new_xyz.shape[0], feat.shape[1]).zero_() |
| 268 | + for i in range(k): |
| 269 | + new_feat += feat[idx[:, i].long(), :] * weight[:, i].unsqueeze(-1) |
| 270 | + return new_feat |
| 271 | + |
| 272 | + |
| 273 | +class Interpolation(Function): |
| 274 | + @staticmethod |
| 275 | + def forward(ctx, xyz, new_xyz, input, offset, new_offset, k=3): |
| 276 | + """ |
| 277 | + input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) |
| 278 | + output: (n, c) |
| 279 | + """ |
| 280 | + assert xyz.is_contiguous() and new_xyz.is_contiguous() and input.is_contiguous() |
| 281 | + idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) # (n, k), (n, k) |
| 282 | + dist_recip = 1.0 / (dist + 1e-8) # (n, k) |
| 283 | + norm = torch.sum(dist_recip, dim=1, keepdim=True) |
| 284 | + weight = dist_recip / norm # (n, k) |
| 285 | + |
| 286 | + n, c, m = new_xyz.shape[0], input.shape[1], input.shape[0] |
| 287 | + output = torch.cuda.FloatTensor(n, c).zero_() |
| 288 | + pointops_cuda.interpolation_forward_cuda(n, c, k, input, idx, weight, output) |
| 289 | + ctx.m, ctx.k = m, k |
| 290 | + ctx.save_for_backward(idx, weight) |
| 291 | + return output |
| 292 | + |
| 293 | + @staticmethod |
| 294 | + def backward(ctx, grad_output): |
| 295 | + """ |
| 296 | + input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) |
| 297 | + output: (n, c) |
| 298 | + """ |
| 299 | + m, k = ctx.m, ctx.k |
| 300 | + idx, weight = ctx.saved_tensors |
| 301 | + n, c = grad_output.shape |
| 302 | + grad_input = torch.cuda.FloatTensor(m, c).zero_() |
| 303 | + pointops_cuda.interpolation_backward_cuda(n, c, k, grad_output, idx, weight, grad_input) |
| 304 | + return None, None, grad_input, None, None, None |
| 305 | + |
| 306 | + |
| 307 | +interpolation2 = Interpolation.apply |
0 commit comments