diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index f13b7d54aec4..5492dff04cae 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -283,6 +283,8 @@ title: AllegroTransformer3DModel - local: api/models/aura_flow_transformer2d title: AuraFlowTransformer2DModel + - local: api/models/chroma_transformer + title: ChromaTransformer2DModel - local: api/models/cogvideox_transformer3d title: CogVideoXTransformer3DModel - local: api/models/cogview3plus_transformer2d @@ -405,6 +407,8 @@ title: AutoPipeline - local: api/pipelines/blip_diffusion title: BLIP-Diffusion + - local: api/pipelines/chroma + title: Chroma - local: api/pipelines/cogvideox title: CogVideoX - local: api/pipelines/cogview3 diff --git a/docs/source/en/api/models/chroma_transformer.md b/docs/source/en/api/models/chroma_transformer.md new file mode 100644 index 000000000000..681e81f7a584 --- /dev/null +++ b/docs/source/en/api/models/chroma_transformer.md @@ -0,0 +1,19 @@ +<!--Copyright 2025 The HuggingFace Team. All rights reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with +the License. You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on +an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. +--> + +# ChromaTransformer2DModel + +A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma) + +## ChromaTransformer2DModel + +[[autodoc]] ChromaTransformer2DModel diff --git a/docs/source/en/api/pipelines/chroma.md b/docs/source/en/api/pipelines/chroma.md new file mode 100644 index 000000000000..22448d88e06b --- /dev/null +++ b/docs/source/en/api/pipelines/chroma.md @@ -0,0 +1,71 @@ +<!--Copyright 2025 The HuggingFace Team. All rights reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with +the License. You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on +an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. +--> + +# Chroma + +<div class="flex flex-wrap space-x-1"> + <img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/> + <img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22"> +</div> + +Chroma is a text to image generation model based on Flux. + +Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma). + +<Tip> + +Chroma can use all the same optimizations as Flux. + +</Tip> + +## Inference (Single File) + +The `ChromaTransformer2DModel` supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community. + +The following example demonstrates how to run Chroma from a single file. + +Then run the following example + +```python +import torch +from diffusers import ChromaTransformer2DModel, ChromaPipeline +from transformers import T5EncoderModel + +bfl_repo = "black-forest-labs/FLUX.1-dev" +dtype = torch.bfloat16 + +transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype) + +text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype) +tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype) + +pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype) + +pipe.enable_model_cpu_offload() + +prompt = "A cat holding a sign that says hello world" +image = pipe( + prompt, + guidance_scale=4.0, + output_type="pil", + num_inference_steps=26, + generator=torch.Generator("cpu").manual_seed(0) +).images[0] + +image.save("image.png") +``` + +## ChromaPipeline + +[[autodoc]] ChromaPipeline + - all + - __call__ diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index ce0777fdef68..27bbd3501680 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -159,6 +159,7 @@ "AutoencoderTiny", "AutoModel", "CacheMixin", + "ChromaTransformer2DModel", "CogVideoXTransformer3DModel", "CogView3PlusTransformer2DModel", "CogView4Transformer2DModel", @@ -352,6 +353,7 @@ "AuraFlowPipeline", "BlipDiffusionControlNetPipeline", "BlipDiffusionPipeline", + "ChromaPipeline", "CLIPImageProjection", "CogVideoXFunControlPipeline", "CogVideoXImageToVideoPipeline", @@ -768,6 +770,7 @@ AutoencoderTiny, AutoModel, CacheMixin, + ChromaTransformer2DModel, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, CogView4Transformer2DModel, @@ -940,6 +943,7 @@ AudioLDM2UNet2DConditionModel, AudioLDMPipeline, AuraFlowPipeline, + ChromaPipeline, CLIPImageProjection, CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, diff --git a/src/diffusers/loaders/peft.py b/src/diffusers/loaders/peft.py index 0480e93f356f..e7a458f28ef9 100644 --- a/src/diffusers/loaders/peft.py +++ b/src/diffusers/loaders/peft.py @@ -60,6 +60,7 @@ "HiDreamImageTransformer2DModel": lambda model_cls, weights: weights, "HunyuanVideoFramepackTransformer3DModel": lambda model_cls, weights: weights, "WanVACETransformer3DModel": lambda model_cls, weights: weights, + "ChromaTransformer2DModel": lambda model_cls, weights: weights, } diff --git a/src/diffusers/loaders/single_file_model.py b/src/diffusers/loaders/single_file_model.py index 6919c4949d59..c2eb62ba1222 100644 --- a/src/diffusers/loaders/single_file_model.py +++ b/src/diffusers/loaders/single_file_model.py @@ -29,6 +29,7 @@ convert_animatediff_checkpoint_to_diffusers, convert_auraflow_transformer_checkpoint_to_diffusers, convert_autoencoder_dc_checkpoint_to_diffusers, + convert_chroma_transformer_checkpoint_to_diffusers, convert_controlnet_checkpoint, convert_flux_transformer_checkpoint_to_diffusers, convert_hidream_transformer_to_diffusers, @@ -97,6 +98,10 @@ "checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers, "default_subfolder": "transformer", }, + "ChromaTransformer2DModel": { + "checkpoint_mapping_fn": convert_chroma_transformer_checkpoint_to_diffusers, + "default_subfolder": "transformer", + }, "LTXVideoTransformer3DModel": { "checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers, "default_subfolder": "transformer", diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py index 0f762b949d47..d8d183304e9a 100644 --- a/src/diffusers/loaders/single_file_utils.py +++ b/src/diffusers/loaders/single_file_utils.py @@ -3310,3 +3310,172 @@ def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs): checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) return checkpoint + + +def convert_chroma_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): + converted_state_dict = {} + keys = list(checkpoint.keys()) + + for k in keys: + if "model.diffusion_model." in k: + checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) + + num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 # noqa: C401 + num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 # noqa: C401 + num_guidance_layers = ( + list(set(int(k.split(".", 3)[2]) for k in checkpoint if "distilled_guidance_layer.layers." in k))[-1] + 1 # noqa: C401 + ) + mlp_ratio = 4.0 + inner_dim = 3072 + + # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale; + # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation + def swap_scale_shift(weight): + shift, scale = weight.chunk(2, dim=0) + new_weight = torch.cat([scale, shift], dim=0) + return new_weight + + # guidance + converted_state_dict["distilled_guidance_layer.in_proj.bias"] = checkpoint.pop( + "distilled_guidance_layer.in_proj.bias" + ) + converted_state_dict["distilled_guidance_layer.in_proj.weight"] = checkpoint.pop( + "distilled_guidance_layer.in_proj.weight" + ) + converted_state_dict["distilled_guidance_layer.out_proj.bias"] = checkpoint.pop( + "distilled_guidance_layer.out_proj.bias" + ) + converted_state_dict["distilled_guidance_layer.out_proj.weight"] = checkpoint.pop( + "distilled_guidance_layer.out_proj.weight" + ) + for i in range(num_guidance_layers): + block_prefix = f"distilled_guidance_layer.layers.{i}." + converted_state_dict[f"{block_prefix}linear_1.bias"] = checkpoint.pop( + f"distilled_guidance_layer.layers.{i}.in_layer.bias" + ) + converted_state_dict[f"{block_prefix}linear_1.weight"] = checkpoint.pop( + f"distilled_guidance_layer.layers.{i}.in_layer.weight" + ) + converted_state_dict[f"{block_prefix}linear_2.bias"] = checkpoint.pop( + f"distilled_guidance_layer.layers.{i}.out_layer.bias" + ) + converted_state_dict[f"{block_prefix}linear_2.weight"] = checkpoint.pop( + f"distilled_guidance_layer.layers.{i}.out_layer.weight" + ) + converted_state_dict[f"distilled_guidance_layer.norms.{i}.weight"] = checkpoint.pop( + f"distilled_guidance_layer.norms.{i}.scale" + ) + + # context_embedder + converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight") + converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias") + + # x_embedder + converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight") + converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias") + + # double transformer blocks + for i in range(num_layers): + block_prefix = f"transformer_blocks.{i}." + # Q, K, V + sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0) + context_q, context_k, context_v = torch.chunk( + checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0 + ) + sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( + checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0 + ) + context_q_bias, context_k_bias, context_v_bias = torch.chunk( + checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0 + ) + converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q]) + converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias]) + converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k]) + converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias]) + converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v]) + converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias]) + converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q]) + converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias]) + converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k]) + converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias]) + converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v]) + converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias]) + # qk_norm + converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop( + f"double_blocks.{i}.img_attn.norm.query_norm.scale" + ) + converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop( + f"double_blocks.{i}.img_attn.norm.key_norm.scale" + ) + converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop( + f"double_blocks.{i}.txt_attn.norm.query_norm.scale" + ) + converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop( + f"double_blocks.{i}.txt_attn.norm.key_norm.scale" + ) + # ff img_mlp + converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop( + f"double_blocks.{i}.img_mlp.0.weight" + ) + converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias") + converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight") + converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias") + converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop( + f"double_blocks.{i}.txt_mlp.0.weight" + ) + converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop( + f"double_blocks.{i}.txt_mlp.0.bias" + ) + converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop( + f"double_blocks.{i}.txt_mlp.2.weight" + ) + converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop( + f"double_blocks.{i}.txt_mlp.2.bias" + ) + # output projections. + converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop( + f"double_blocks.{i}.img_attn.proj.weight" + ) + converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop( + f"double_blocks.{i}.img_attn.proj.bias" + ) + converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop( + f"double_blocks.{i}.txt_attn.proj.weight" + ) + converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop( + f"double_blocks.{i}.txt_attn.proj.bias" + ) + + # single transformer blocks + for i in range(num_single_layers): + block_prefix = f"single_transformer_blocks.{i}." + # Q, K, V, mlp + mlp_hidden_dim = int(inner_dim * mlp_ratio) + split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) + q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0) + q_bias, k_bias, v_bias, mlp_bias = torch.split( + checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0 + ) + converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q]) + converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias]) + converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k]) + converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias]) + converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v]) + converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias]) + converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp]) + converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias]) + # qk norm + converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop( + f"single_blocks.{i}.norm.query_norm.scale" + ) + converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop( + f"single_blocks.{i}.norm.key_norm.scale" + ) + # output projections. + converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight") + converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias") + + converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight") + converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias") + + return converted_state_dict diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index 8723fbca2187..b493d651f4ba 100755 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -74,6 +74,7 @@ _import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"] _import_structure["transformers.transformer_2d"] = ["Transformer2DModel"] _import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"] + _import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"] _import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"] _import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"] _import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"] @@ -151,6 +152,7 @@ from .transformers import ( AllegroTransformer3DModel, AuraFlowTransformer2DModel, + ChromaTransformer2DModel, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, CogView4Transformer2DModel, diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index 09e3621c2c7b..cfc501c47ed9 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -31,7 +31,7 @@ def get_timestep_embedding( downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, -): +) -> torch.Tensor: """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. @@ -1325,7 +1325,7 @@ def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shif self.downscale_freq_shift = downscale_freq_shift self.scale = scale - def forward(self, timesteps): + def forward(self, timesteps: torch.Tensor) -> torch.Tensor: t_emb = get_timestep_embedding( timesteps, self.num_channels, diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py index e7b8ba55ca61..cc03a0ccbcdf 100755 --- a/src/diffusers/models/transformers/__init__.py +++ b/src/diffusers/models/transformers/__init__.py @@ -17,6 +17,7 @@ from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel + from .transformer_chroma import ChromaTransformer2DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_cosmos import CosmosTransformer3DModel diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py new file mode 100644 index 000000000000..2b415cfed2fe --- /dev/null +++ b/src/diffusers/models/transformers/transformer_chroma.py @@ -0,0 +1,732 @@ +# Copyright 2025 Black Forest Labs, The HuggingFace Team and loadstone-rock . All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Any, Dict, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn as nn + +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.import_utils import is_torch_npu_available +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention import FeedForward +from ..attention_processor import ( + Attention, + AttentionProcessor, + FluxAttnProcessor2_0, + FluxAttnProcessor2_0_NPU, + FusedFluxAttnProcessor2_0, +) +from ..cache_utils import CacheMixin +from ..embeddings import FluxPosEmbed, PixArtAlphaTextProjection, Timesteps, get_timestep_embedding +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import CombinedTimestepLabelEmbeddings, FP32LayerNorm, RMSNorm + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class ChromaAdaLayerNormZeroPruned(nn.Module): + r""" + Norm layer adaptive layer norm zero (adaLN-Zero). + + Parameters: + embedding_dim (`int`): The size of each embedding vector. + num_embeddings (`int`): The size of the embeddings dictionary. + """ + + def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True): + super().__init__() + if num_embeddings is not None: + self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) + else: + self.emb = None + + if norm_type == "layer_norm": + self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) + elif norm_type == "fp32_layer_norm": + self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) + else: + raise ValueError( + f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." + ) + + def forward( + self, + x: torch.Tensor, + timestep: Optional[torch.Tensor] = None, + class_labels: Optional[torch.LongTensor] = None, + hidden_dtype: Optional[torch.dtype] = None, + emb: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + if self.emb is not None: + emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) + shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.flatten(1, 2).chunk(6, dim=1) + x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] + return x, gate_msa, shift_mlp, scale_mlp, gate_mlp + + +class ChromaAdaLayerNormZeroSinglePruned(nn.Module): + r""" + Norm layer adaptive layer norm zero (adaLN-Zero). + + Parameters: + embedding_dim (`int`): The size of each embedding vector. + num_embeddings (`int`): The size of the embeddings dictionary. + """ + + def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): + super().__init__() + + if norm_type == "layer_norm": + self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) + else: + raise ValueError( + f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." + ) + + def forward( + self, + x: torch.Tensor, + emb: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + shift_msa, scale_msa, gate_msa = emb.flatten(1, 2).chunk(3, dim=1) + x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] + return x, gate_msa + + +class ChromaAdaLayerNormContinuousPruned(nn.Module): + r""" + Adaptive normalization layer with a norm layer (layer_norm or rms_norm). + + Args: + embedding_dim (`int`): Embedding dimension to use during projection. + conditioning_embedding_dim (`int`): Dimension of the input condition. + elementwise_affine (`bool`, defaults to `True`): + Boolean flag to denote if affine transformation should be applied. + eps (`float`, defaults to 1e-5): Epsilon factor. + bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use. + norm_type (`str`, defaults to `"layer_norm"`): + Normalization layer to use. Values supported: "layer_norm", "rms_norm". + """ + + def __init__( + self, + embedding_dim: int, + conditioning_embedding_dim: int, + # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters + # because the output is immediately scaled and shifted by the projected conditioning embeddings. + # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. + # However, this is how it was implemented in the original code, and it's rather likely you should + # set `elementwise_affine` to False. + elementwise_affine=True, + eps=1e-5, + bias=True, + norm_type="layer_norm", + ): + super().__init__() + if norm_type == "layer_norm": + self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias) + elif norm_type == "rms_norm": + self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) + else: + raise ValueError(f"unknown norm_type {norm_type}") + + def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: + # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) + shift, scale = torch.chunk(emb.flatten(1, 2).to(x.dtype), 2, dim=1) + x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] + return x + + +class ChromaCombinedTimestepTextProjEmbeddings(nn.Module): + def __init__(self, num_channels: int, out_dim: int): + super().__init__() + + self.time_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.guidance_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + + self.register_buffer( + "mod_proj", + get_timestep_embedding( + torch.arange(out_dim) * 1000, 2 * num_channels, flip_sin_to_cos=True, downscale_freq_shift=0 + ), + persistent=False, + ) + + def forward(self, timestep: torch.Tensor) -> torch.Tensor: + mod_index_length = self.mod_proj.shape[0] + batch_size = timestep.shape[0] + + timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype) + guidance_proj = self.guidance_proj(torch.tensor([0] * batch_size)).to( + dtype=timestep.dtype, device=timestep.device + ) + + mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device).repeat(batch_size, 1, 1) + timestep_guidance = ( + torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1) + ) + input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1) + return input_vec.to(timestep.dtype) + + +class ChromaApproximator(nn.Module): + def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5): + super().__init__() + self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True) + self.layers = nn.ModuleList( + [PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)] + ) + self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)]) + self.out_proj = nn.Linear(hidden_dim, out_dim) + + def forward(self, x): + x = self.in_proj(x) + + for layer, norms in zip(self.layers, self.norms): + x = x + layer(norms(x)) + + return self.out_proj(x) + + +@maybe_allow_in_graph +class ChromaSingleTransformerBlock(nn.Module): + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + mlp_ratio: float = 4.0, + ): + super().__init__() + self.mlp_hidden_dim = int(dim * mlp_ratio) + self.norm = ChromaAdaLayerNormZeroSinglePruned(dim) + self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) + self.act_mlp = nn.GELU(approximate="tanh") + self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) + + if is_torch_npu_available(): + deprecation_message = ( + "Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors " + "should be set explicitly using the `set_attn_processor` method." + ) + deprecate("npu_processor", "0.34.0", deprecation_message) + processor = FluxAttnProcessor2_0_NPU() + else: + processor = FluxAttnProcessor2_0() + + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + bias=True, + processor=processor, + qk_norm="rms_norm", + eps=1e-6, + pre_only=True, + ) + + def forward( + self, + hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> torch.Tensor: + residual = hidden_states + norm_hidden_states, gate = self.norm(hidden_states, emb=temb) + mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) + joint_attention_kwargs = joint_attention_kwargs or {} + attn_output = self.attn( + hidden_states=norm_hidden_states, + image_rotary_emb=image_rotary_emb, + **joint_attention_kwargs, + ) + + hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) + gate = gate.unsqueeze(1) + hidden_states = gate * self.proj_out(hidden_states) + hidden_states = residual + hidden_states + if hidden_states.dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +@maybe_allow_in_graph +class ChromaTransformerBlock(nn.Module): + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + qk_norm: str = "rms_norm", + eps: float = 1e-6, + ): + super().__init__() + self.norm1 = ChromaAdaLayerNormZeroPruned(dim) + self.norm1_context = ChromaAdaLayerNormZeroPruned(dim) + + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + added_kv_proj_dim=dim, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + context_pre_only=False, + bias=True, + processor=FluxAttnProcessor2_0(), + qk_norm=qk_norm, + eps=eps, + ) + + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + temb_img, temb_txt = temb[:, :6], temb[:, 6:] + norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img) + + norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( + encoder_hidden_states, emb=temb_txt + ) + joint_attention_kwargs = joint_attention_kwargs or {} + # Attention. + attention_outputs = self.attn( + hidden_states=norm_hidden_states, + encoder_hidden_states=norm_encoder_hidden_states, + image_rotary_emb=image_rotary_emb, + **joint_attention_kwargs, + ) + + if len(attention_outputs) == 2: + attn_output, context_attn_output = attention_outputs + elif len(attention_outputs) == 3: + attn_output, context_attn_output, ip_attn_output = attention_outputs + + # Process attention outputs for the `hidden_states`. + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + + ff_output = self.ff(norm_hidden_states) + ff_output = gate_mlp.unsqueeze(1) * ff_output + + hidden_states = hidden_states + ff_output + if len(attention_outputs) == 3: + hidden_states = hidden_states + ip_attn_output + + # Process attention outputs for the `encoder_hidden_states`. + + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + + context_ff_output = self.ff_context(norm_encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + if encoder_hidden_states.dtype == torch.float16: + encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) + + return encoder_hidden_states, hidden_states + + +class ChromaTransformer2DModel( + ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin +): + """ + The Transformer model introduced in Flux, modified for Chroma. + + Reference: https://huggingface.co/lodestones/Chroma + + Args: + patch_size (`int`, defaults to `1`): + Patch size to turn the input data into small patches. + in_channels (`int`, defaults to `64`): + The number of channels in the input. + out_channels (`int`, *optional*, defaults to `None`): + The number of channels in the output. If not specified, it defaults to `in_channels`. + num_layers (`int`, defaults to `19`): + The number of layers of dual stream DiT blocks to use. + num_single_layers (`int`, defaults to `38`): + The number of layers of single stream DiT blocks to use. + attention_head_dim (`int`, defaults to `128`): + The number of dimensions to use for each attention head. + num_attention_heads (`int`, defaults to `24`): + The number of attention heads to use. + joint_attention_dim (`int`, defaults to `4096`): + The number of dimensions to use for the joint attention (embedding/channel dimension of + `encoder_hidden_states`). + axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`): + The dimensions to use for the rotary positional embeddings. + """ + + _supports_gradient_checkpointing = True + _no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"] + _skip_layerwise_casting_patterns = ["pos_embed", "norm"] + + @register_to_config + def __init__( + self, + patch_size: int = 1, + in_channels: int = 64, + out_channels: Optional[int] = None, + num_layers: int = 19, + num_single_layers: int = 38, + attention_head_dim: int = 128, + num_attention_heads: int = 24, + joint_attention_dim: int = 4096, + axes_dims_rope: Tuple[int, ...] = (16, 56, 56), + approximator_num_channels: int = 64, + approximator_hidden_dim: int = 5120, + approximator_layers: int = 5, + ): + super().__init__() + self.out_channels = out_channels or in_channels + self.inner_dim = num_attention_heads * attention_head_dim + + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + + self.time_text_embed = ChromaCombinedTimestepTextProjEmbeddings( + num_channels=approximator_num_channels // 4, + out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2, + ) + self.distilled_guidance_layer = ChromaApproximator( + in_dim=approximator_num_channels, + out_dim=self.inner_dim, + hidden_dim=approximator_hidden_dim, + n_layers=approximator_layers, + ) + + self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) + self.x_embedder = nn.Linear(in_channels, self.inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + ChromaTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for _ in range(num_layers) + ] + ) + + self.single_transformer_blocks = nn.ModuleList( + [ + ChromaSingleTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for _ in range(num_single_layers) + ] + ) + + self.norm_out = ChromaAdaLayerNormContinuousPruned( + self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 + ) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + + self.gradient_checkpointing = False + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0 + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + <Tip warning={true}> + + This API is 🧪 experimental. + + </Tip> + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + self.set_attn_processor(FusedFluxAttnProcessor2_0()) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + <Tip warning={true}> + + This API is 🧪 experimental. + + </Tip> + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor = None, + timestep: torch.LongTensor = None, + img_ids: torch.Tensor = None, + txt_ids: torch.Tensor = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_block_samples=None, + controlnet_single_block_samples=None, + return_dict: bool = True, + controlnet_blocks_repeat: bool = False, + ) -> Union[torch.Tensor, Transformer2DModelOutput]: + """ + The [`FluxTransformer2DModel`] forward method. + + Args: + hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): + Input `hidden_states`. + encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): + Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. + timestep ( `torch.LongTensor`): + Used to indicate denoising step. + block_controlnet_hidden_states: (`list` of `torch.Tensor`): + A list of tensors that if specified are added to the residuals of transformer blocks. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + else: + if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: + logger.warning( + "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." + ) + + hidden_states = self.x_embedder(hidden_states) + + timestep = timestep.to(hidden_states.dtype) * 1000 + + input_vec = self.time_text_embed(timestep) + pooled_temb = self.distilled_guidance_layer(input_vec) + + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + + if txt_ids.ndim == 3: + logger.warning( + "Passing `txt_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + logger.warning( + "Passing `img_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + img_ids = img_ids[0] + + ids = torch.cat((txt_ids, img_ids), dim=0) + image_rotary_emb = self.pos_embed(ids) + + if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: + ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") + ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) + joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) + + for index_block, block in enumerate(self.transformer_blocks): + img_offset = 3 * len(self.single_transformer_blocks) + txt_offset = img_offset + 6 * len(self.transformer_blocks) + img_modulation = img_offset + 6 * index_block + text_modulation = txt_offset + 6 * index_block + temb = torch.cat( + ( + pooled_temb[:, img_modulation : img_modulation + 6], + pooled_temb[:, text_modulation : text_modulation + 6], + ), + dim=1, + ) + if torch.is_grad_enabled() and self.gradient_checkpointing: + encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( + block, + hidden_states, + encoder_hidden_states, + temb, + image_rotary_emb, + ) + + else: + encoder_hidden_states, hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + joint_attention_kwargs=joint_attention_kwargs, + ) + + # controlnet residual + if controlnet_block_samples is not None: + interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) + interval_control = int(np.ceil(interval_control)) + # For Xlabs ControlNet. + if controlnet_blocks_repeat: + hidden_states = ( + hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] + ) + else: + hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + for index_block, block in enumerate(self.single_transformer_blocks): + start_idx = 3 * index_block + temb = pooled_temb[:, start_idx : start_idx + 3] + if torch.is_grad_enabled() and self.gradient_checkpointing: + hidden_states = self._gradient_checkpointing_func( + block, + hidden_states, + temb, + image_rotary_emb, + ) + + else: + hidden_states = block( + hidden_states=hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + joint_attention_kwargs=joint_attention_kwargs, + ) + + # controlnet residual + if controlnet_single_block_samples is not None: + interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) + interval_control = int(np.ceil(interval_control)) + hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( + hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + controlnet_single_block_samples[index_block // interval_control] + ) + + hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + temb = pooled_temb[:, -2:] + hidden_states = self.norm_out(hidden_states, temb) + output = self.proj_out(hidden_states) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (output,) + + return Transformer2DModelOutput(sample=output) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 268e5c2a8c39..058411bd65f9 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -148,6 +148,7 @@ "AudioLDM2UNet2DConditionModel", ] _import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"] + _import_structure["chroma"] = ["ChromaPipeline"] _import_structure["cogvideo"] = [ "CogVideoXPipeline", "CogVideoXImageToVideoPipeline", @@ -531,6 +532,7 @@ ) from .aura_flow import AuraFlowPipeline from .blip_diffusion import BlipDiffusionPipeline + from .chroma import ChromaPipeline from .cogvideo import ( CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py index ed8ad79ca781..b1a7ffaaea9c 100644 --- a/src/diffusers/pipelines/auto_pipeline.py +++ b/src/diffusers/pipelines/auto_pipeline.py @@ -21,6 +21,7 @@ from ..models.controlnets import ControlNetUnionModel from ..utils import is_sentencepiece_available from .aura_flow import AuraFlowPipeline +from .chroma import ChromaPipeline from .cogview3 import CogView3PlusPipeline from .cogview4 import CogView4ControlPipeline, CogView4Pipeline from .controlnet import ( @@ -143,6 +144,7 @@ ("flux-controlnet", FluxControlNetPipeline), ("lumina", LuminaPipeline), ("lumina2", Lumina2Pipeline), + ("chroma", ChromaPipeline), ("cogview3", CogView3PlusPipeline), ("cogview4", CogView4Pipeline), ("cogview4-control", CogView4ControlPipeline), diff --git a/src/diffusers/pipelines/chroma/__init__.py b/src/diffusers/pipelines/chroma/__init__.py new file mode 100644 index 000000000000..9faa7902a15c --- /dev/null +++ b/src/diffusers/pipelines/chroma/__init__.py @@ -0,0 +1,47 @@ +from typing import TYPE_CHECKING + +from ...utils import ( + DIFFUSERS_SLOW_IMPORT, + OptionalDependencyNotAvailable, + _LazyModule, + get_objects_from_module, + is_torch_available, + is_transformers_available, +) + + +_dummy_objects = {} +_additional_imports = {} +_import_structure = {"pipeline_output": ["ChromaPipelineOutput"]} + +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure["pipeline_chroma"] = ["ChromaPipeline"] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 + else: + from .pipeline_chroma import ChromaPipeline +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + module_spec=__spec__, + ) + + for name, value in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for name, value in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py new file mode 100644 index 000000000000..c111458d3320 --- /dev/null +++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py @@ -0,0 +1,863 @@ +# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import torch +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast + +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ChromaTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import ChromaPipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import ChromaPipeline + + >>> pipe = ChromaPipeline.from_single_file( + ... "chroma-unlocked-v35-detail-calibrated.safetensors", torch_dtype=torch.bfloat16 + ... ) + >>> pipe.to("cuda") + >>> prompt = "A cat holding a sign that says hello world" + >>> image = pipe(prompt, num_inference_steps=28, guidance_scale=4.0).images[0] + >>> image.save("chroma.png") + ``` +""" + + +# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.15, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + r""" + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class ChromaPipeline( + DiffusionPipeline, + FluxLoraLoaderMixin, + FromSingleFileMixin, + TextualInversionLoaderMixin, + FluxIPAdapterMixin, +): + r""" + The Chroma pipeline for text-to-image generation. + + Reference: https://huggingface.co/lodestones/Chroma/ + + Args: + transformer ([`ChromaTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation + text_encoder ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae" + _optional_components = ["image_encoder", "feature_extractor"] + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: T5EncoderModel, + tokenizer: T5TokenizerFast, + transformer: ChromaTransformer2DModel, + image_encoder: CLIPVisionModelWithProjection = None, + feature_extractor: CLIPImageProcessor = None, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + transformer=transformer, + scheduler=scheduler, + image_encoder=image_encoder, + feature_extractor=feature_extractor, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 + # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible + # by the patch size. So the vae scale factor is multiplied by the patch size to account for this + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) + self.default_sample_size = 128 + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask.clone() + + # Chroma requires the attention mask to include one padding token + seq_lengths = attention_mask.sum(dim=1) + mask_indices = torch.arange(attention_mask.size(1)).unsqueeze(0).expand(batch_size, -1) + attention_mask = (mask_indices <= seq_lengths.unsqueeze(1)).long() + + prompt_embeds = self.text_encoder( + text_input_ids.to(device), output_hidden_states=False, attention_mask=attention_mask.to(device) + )[0] + + dtype = self.text_encoder.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + negative_prompt: Union[str, List[str]] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + do_classifier_free_guidance: bool = True, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + negative_prompt (`str` or `List[str]`, *optional*): + The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` + instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + negative_text_ids = None + + if do_classifier_free_guidance: + if negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt = ( + batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + ) + + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + + negative_prompt_embeds = self._get_t5_prompt_embeds( + prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + negative_text_ids = torch.zeros(negative_prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, text_ids, negative_prompt_embeds, negative_text_ids + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + return image_embeds + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt + ): + image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." + ) + + for single_ip_adapter_image in ip_adapter_image: + single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) + image_embeds.append(single_image_embeds[None, :]) + else: + if not isinstance(ip_adapter_image_embeds, list): + ip_adapter_image_embeds = [ip_adapter_image_embeds] + + if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: + raise ValueError( + f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." + ) + + for single_image_embeds in ip_adapter_image_embeds: + image_embeds.append(single_image_embeds) + + ip_adapter_image_embeds = [] + for single_image_embeds in image_embeds: + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + + return ip_adapter_image_embeds + + def check_inputs( + self, + prompt, + height, + width, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: + logger.warning( + f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height, width, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (vae_scale_factor * 2)) + width = 2 * (int(width) // (vae_scale_factor * 2)) + + latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height, width) + + return latents + + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + + return latents, latent_image_ids + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def current_timestep(self): + return self._current_timestep + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + negative_prompt: Union[str, List[str]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + sigmas: Optional[List[float]] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, + negative_ip_adapter_image: Optional[PipelineImageInput] = None, + negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + not greater than `1`). + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + guidance_scale (`float`, *optional*, defaults to 3.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + negative_ip_adapter_image: + (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if + `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the + generated images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + height, + width, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._current_timestep = None + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + ( + prompt_embeds, + text_ids, + negative_prompt_embeds, + negative_text_ids, + ) = self.encode_prompt( + prompt=prompt, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + do_classifier_free_guidance=self.do_classifier_free_guidance, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas + image_seq_len = latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.get("base_image_seq_len", 256), + self.scheduler.config.get("max_image_seq_len", 4096), + self.scheduler.config.get("base_shift", 0.5), + self.scheduler.config.get("max_shift", 1.15), + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + sigmas=sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( + negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None + ): + negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) + negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters + + elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( + negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None + ): + ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) + ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters + + if self.joint_attention_kwargs is None: + self._joint_attention_kwargs = {} + + image_embeds = None + negative_image_embeds = None + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + ) + if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: + negative_image_embeds = self.prepare_ip_adapter_image_embeds( + negative_ip_adapter_image, + negative_ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + ) + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + self._current_timestep = t + if image_embeds is not None: + self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + noise_pred = self.transformer( + hidden_states=latents, + timestep=timestep / 1000, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + if self.do_classifier_free_guidance: + if negative_image_embeds is not None: + self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds + neg_noise_pred = self.transformer( + hidden_states=latents, + timestep=timestep / 1000, + encoder_hidden_states=negative_prompt_embeds, + txt_ids=negative_text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + noise_pred = neg_noise_pred + guidance_scale * (noise_pred - neg_noise_pred) + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + self._current_timestep = None + + if output_type == "latent": + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return ChromaPipelineOutput(images=image) diff --git a/src/diffusers/pipelines/chroma/pipeline_output.py b/src/diffusers/pipelines/chroma/pipeline_output.py new file mode 100644 index 000000000000..951d132dba2e --- /dev/null +++ b/src/diffusers/pipelines/chroma/pipeline_output.py @@ -0,0 +1,21 @@ +from dataclasses import dataclass +from typing import List, Union + +import numpy as np +import PIL.Image + +from ...utils import BaseOutput + + +@dataclass +class ChromaPipelineOutput(BaseOutput): + """ + Output class for Stable Diffusion pipelines. + + Args: + images (`List[PIL.Image.Image]` or `np.ndarray`) + List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, + num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. + """ + + images: Union[List[PIL.Image.Image], np.ndarray] diff --git a/src/diffusers/utils/dummy_pt_objects.py b/src/diffusers/utils/dummy_pt_objects.py index 24b3c3d7be59..2981f3a420d6 100644 --- a/src/diffusers/utils/dummy_pt_objects.py +++ b/src/diffusers/utils/dummy_pt_objects.py @@ -325,6 +325,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) +class ChromaTransformer2DModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + class CogVideoXTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index cc8f3e01ee78..deebdc757faa 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -272,6 +272,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class ChromaPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class CLIPImageProjection(metaclass=DummyObject): _backends = ["torch", "transformers"] diff --git a/tests/models/transformers/test_models_transformer_chroma.py b/tests/models/transformers/test_models_transformer_chroma.py new file mode 100644 index 000000000000..93df7ca35c4a --- /dev/null +++ b/tests/models/transformers/test_models_transformer_chroma.py @@ -0,0 +1,183 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import torch + +from diffusers import ChromaTransformer2DModel +from diffusers.models.attention_processor import FluxIPAdapterJointAttnProcessor2_0 +from diffusers.models.embeddings import ImageProjection +from diffusers.utils.testing_utils import enable_full_determinism, torch_device + +from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin + + +enable_full_determinism() + + +def create_chroma_ip_adapter_state_dict(model): + # "ip_adapter" (cross-attention weights) + ip_cross_attn_state_dict = {} + key_id = 0 + + for name in model.attn_processors.keys(): + if name.startswith("single_transformer_blocks"): + continue + + joint_attention_dim = model.config["joint_attention_dim"] + hidden_size = model.config["num_attention_heads"] * model.config["attention_head_dim"] + sd = FluxIPAdapterJointAttnProcessor2_0( + hidden_size=hidden_size, cross_attention_dim=joint_attention_dim, scale=1.0 + ).state_dict() + ip_cross_attn_state_dict.update( + { + f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], + f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], + f"{key_id}.to_k_ip.bias": sd["to_k_ip.0.bias"], + f"{key_id}.to_v_ip.bias": sd["to_v_ip.0.bias"], + } + ) + + key_id += 1 + + # "image_proj" (ImageProjection layer weights) + + image_projection = ImageProjection( + cross_attention_dim=model.config["joint_attention_dim"], + image_embed_dim=model.config["pooled_projection_dim"], + num_image_text_embeds=4, + ) + + ip_image_projection_state_dict = {} + sd = image_projection.state_dict() + ip_image_projection_state_dict.update( + { + "proj.weight": sd["image_embeds.weight"], + "proj.bias": sd["image_embeds.bias"], + "norm.weight": sd["norm.weight"], + "norm.bias": sd["norm.bias"], + } + ) + + del sd + ip_state_dict = {} + ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) + return ip_state_dict + + +class ChromaTransformerTests(ModelTesterMixin, unittest.TestCase): + model_class = ChromaTransformer2DModel + main_input_name = "hidden_states" + # We override the items here because the transformer under consideration is small. + model_split_percents = [0.8, 0.7, 0.7] + + # Skip setting testing with default: AttnProcessor + uses_custom_attn_processor = True + + @property + def dummy_input(self): + batch_size = 1 + num_latent_channels = 4 + num_image_channels = 3 + height = width = 4 + sequence_length = 48 + embedding_dim = 32 + + hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device) + encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) + text_ids = torch.randn((sequence_length, num_image_channels)).to(torch_device) + image_ids = torch.randn((height * width, num_image_channels)).to(torch_device) + timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size) + + return { + "hidden_states": hidden_states, + "encoder_hidden_states": encoder_hidden_states, + "img_ids": image_ids, + "txt_ids": text_ids, + "timestep": timestep, + } + + @property + def input_shape(self): + return (16, 4) + + @property + def output_shape(self): + return (16, 4) + + def prepare_init_args_and_inputs_for_common(self): + init_dict = { + "patch_size": 1, + "in_channels": 4, + "num_layers": 1, + "num_single_layers": 1, + "attention_head_dim": 16, + "num_attention_heads": 2, + "joint_attention_dim": 32, + "axes_dims_rope": [4, 4, 8], + "approximator_num_channels": 8, + "approximator_hidden_dim": 16, + "approximator_layers": 1, + } + + inputs_dict = self.dummy_input + return init_dict, inputs_dict + + def test_deprecated_inputs_img_txt_ids_3d(self): + init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() + model = self.model_class(**init_dict) + model.to(torch_device) + model.eval() + + with torch.no_grad(): + output_1 = model(**inputs_dict).to_tuple()[0] + + # update inputs_dict with txt_ids and img_ids as 3d tensors (deprecated) + text_ids_3d = inputs_dict["txt_ids"].unsqueeze(0) + image_ids_3d = inputs_dict["img_ids"].unsqueeze(0) + + assert text_ids_3d.ndim == 3, "text_ids_3d should be a 3d tensor" + assert image_ids_3d.ndim == 3, "img_ids_3d should be a 3d tensor" + + inputs_dict["txt_ids"] = text_ids_3d + inputs_dict["img_ids"] = image_ids_3d + + with torch.no_grad(): + output_2 = model(**inputs_dict).to_tuple()[0] + + self.assertEqual(output_1.shape, output_2.shape) + self.assertTrue( + torch.allclose(output_1, output_2, atol=1e-5), + msg="output with deprecated inputs (img_ids and txt_ids as 3d torch tensors) are not equal as them as 2d inputs", + ) + + def test_gradient_checkpointing_is_applied(self): + expected_set = {"ChromaTransformer2DModel"} + super().test_gradient_checkpointing_is_applied(expected_set=expected_set) + + +class ChromaTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase): + model_class = ChromaTransformer2DModel + + def prepare_init_args_and_inputs_for_common(self): + return ChromaTransformerTests().prepare_init_args_and_inputs_for_common() + + +class ChromaTransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase): + model_class = ChromaTransformer2DModel + + def prepare_init_args_and_inputs_for_common(self): + return ChromaTransformerTests().prepare_init_args_and_inputs_for_common() diff --git a/tests/models/transformers/test_models_transformer_flux.py b/tests/models/transformers/test_models_transformer_flux.py index 33c876535871..036ed2ea3039 100644 --- a/tests/models/transformers/test_models_transformer_flux.py +++ b/tests/models/transformers/test_models_transformer_flux.py @@ -57,7 +57,9 @@ def create_flux_ip_adapter_state_dict(model): image_projection = ImageProjection( cross_attention_dim=model.config["joint_attention_dim"], - image_embed_dim=model.config["pooled_projection_dim"], + image_embed_dim=( + model.config["pooled_projection_dim"] if "pooled_projection_dim" in model.config.keys() else 768 + ), num_image_text_embeds=4, ) diff --git a/tests/pipelines/chroma/__init__.py b/tests/pipelines/chroma/__init__.py new file mode 100644 index 000000000000..8b137891791f --- /dev/null +++ b/tests/pipelines/chroma/__init__.py @@ -0,0 +1 @@ + diff --git a/tests/pipelines/chroma/test_pipeline_chroma.py b/tests/pipelines/chroma/test_pipeline_chroma.py new file mode 100644 index 000000000000..fc5749f96cd8 --- /dev/null +++ b/tests/pipelines/chroma/test_pipeline_chroma.py @@ -0,0 +1,167 @@ +import unittest + +import numpy as np +import torch +from transformers import AutoTokenizer, T5EncoderModel + +from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler +from diffusers.utils.testing_utils import torch_device + +from ..test_pipelines_common import ( + FluxIPAdapterTesterMixin, + PipelineTesterMixin, + check_qkv_fusion_matches_attn_procs_length, + check_qkv_fusion_processors_exist, +) + + +class ChromaPipelineFastTests( + unittest.TestCase, + PipelineTesterMixin, + FluxIPAdapterTesterMixin, +): + pipeline_class = ChromaPipeline + params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds"]) + batch_params = frozenset(["prompt"]) + + # there is no xformers processor for Flux + test_xformers_attention = False + test_layerwise_casting = True + test_group_offloading = True + + def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): + torch.manual_seed(0) + transformer = ChromaTransformer2DModel( + patch_size=1, + in_channels=4, + num_layers=num_layers, + num_single_layers=num_single_layers, + attention_head_dim=16, + num_attention_heads=2, + joint_attention_dim=32, + axes_dims_rope=[4, 4, 8], + approximator_hidden_dim=32, + approximator_layers=1, + approximator_num_channels=16, + ) + + torch.manual_seed(0) + text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") + + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") + + torch.manual_seed(0) + vae = AutoencoderKL( + sample_size=32, + in_channels=3, + out_channels=3, + block_out_channels=(4,), + layers_per_block=1, + latent_channels=1, + norm_num_groups=1, + use_quant_conv=False, + use_post_quant_conv=False, + shift_factor=0.0609, + scaling_factor=1.5035, + ) + + scheduler = FlowMatchEulerDiscreteScheduler() + + return { + "scheduler": scheduler, + "text_encoder": text_encoder, + "tokenizer": tokenizer, + "transformer": transformer, + "vae": vae, + "image_encoder": None, + "feature_extractor": None, + } + + def get_dummy_inputs(self, device, seed=0): + if str(device).startswith("mps"): + generator = torch.manual_seed(seed) + else: + generator = torch.Generator(device="cpu").manual_seed(seed) + + inputs = { + "prompt": "A painting of a squirrel eating a burger", + "negative_prompt": "bad, ugly", + "generator": generator, + "num_inference_steps": 2, + "guidance_scale": 5.0, + "height": 8, + "width": 8, + "max_sequence_length": 48, + "output_type": "np", + } + return inputs + + def test_chroma_different_prompts(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + output_same_prompt = pipe(**inputs).images[0] + + inputs = self.get_dummy_inputs(torch_device) + inputs["prompt"] = "a different prompt" + output_different_prompts = pipe(**inputs).images[0] + + max_diff = np.abs(output_same_prompt - output_different_prompts).max() + + # Outputs should be different here + # For some reasons, they don't show large differences + assert max_diff > 1e-6 + + def test_fused_qkv_projections(self): + device = "cpu" # ensure determinism for the device-dependent torch.Generator + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe = pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs).images + original_image_slice = image[0, -3:, -3:, -1] + + # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added + # to the pipeline level. + pipe.transformer.fuse_qkv_projections() + assert check_qkv_fusion_processors_exist(pipe.transformer), ( + "Something wrong with the fused attention processors. Expected all the attention processors to be fused." + ) + assert check_qkv_fusion_matches_attn_procs_length( + pipe.transformer, pipe.transformer.original_attn_processors + ), "Something wrong with the attention processors concerning the fused QKV projections." + + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs).images + image_slice_fused = image[0, -3:, -3:, -1] + + pipe.transformer.unfuse_qkv_projections() + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs).images + image_slice_disabled = image[0, -3:, -3:, -1] + + assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), ( + "Fusion of QKV projections shouldn't affect the outputs." + ) + assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), ( + "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." + ) + assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), ( + "Original outputs should match when fused QKV projections are disabled." + ) + + def test_chroma_image_output_shape(self): + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) + inputs = self.get_dummy_inputs(torch_device) + + height_width_pairs = [(32, 32), (72, 57)] + for height, width in height_width_pairs: + expected_height = height - height % (pipe.vae_scale_factor * 2) + expected_width = width - width % (pipe.vae_scale_factor * 2) + + inputs.update({"height": height, "width": width}) + image = pipe(**inputs).images[0] + output_height, output_width, _ = image.shape + assert (output_height, output_width) == (expected_height, expected_width) diff --git a/tests/pipelines/test_pipelines_common.py b/tests/pipelines/test_pipelines_common.py index 91ffc0ae537d..687a28294c9a 100644 --- a/tests/pipelines/test_pipelines_common.py +++ b/tests/pipelines/test_pipelines_common.py @@ -521,7 +521,8 @@ def _get_dummy_image_embeds(self, image_embed_dim: int = 768): def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]): inputs["negative_prompt"] = "" - inputs["true_cfg_scale"] = 4.0 + if "true_cfg_scale" in inspect.signature(self.pipeline_class.__call__).parameters: + inputs["true_cfg_scale"] = 4.0 inputs["output_type"] = "np" inputs["return_dict"] = False return inputs @@ -542,7 +543,11 @@ def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=N components = self.get_dummy_components() pipe = self.pipeline_class(**components).to(torch_device) pipe.set_progress_bar_config(disable=None) - image_embed_dim = pipe.transformer.config.pooled_projection_dim + image_embed_dim = ( + pipe.transformer.config.pooled_projection_dim + if hasattr(pipe.transformer.config, "pooled_projection_dim") + else 768 + ) # forward pass without ip adapter inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))