From ff0b9a3c4c38cbd8814eddb217973bda335e4b68 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 20:59:00 -0600
Subject: [PATCH 001/108] working state from hameerabbasi and iddl
---
.../pipelines/chroma/pipeline_chroma.py | 1001 +++++++++++++++++
1 file changed, 1001 insertions(+)
create mode 100644 src/diffusers/pipelines/chroma/pipeline_chroma.py
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
new file mode 100644
index 000000000000..50c0c4cedc57
--- /dev/null
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -0,0 +1,1001 @@
+# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Union
+
+import numpy as np
+import torch
+from transformers import (
+ CLIPImageProcessor,
+ CLIPTextModel,
+ CLIPTokenizer,
+ CLIPVisionModelWithProjection,
+ T5EncoderModel,
+ T5TokenizerFast,
+)
+
+from ...image_processor import PipelineImageInput, VaeImageProcessor
+from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
+from ...models import AutoencoderKL, FluxTransformer2DModel
+from ...schedulers import FlowMatchEulerDiscreteScheduler
+from ...utils import (
+ USE_PEFT_BACKEND,
+ is_torch_xla_available,
+ logging,
+ replace_example_docstring,
+ scale_lora_layers,
+ unscale_lora_layers,
+)
+from ...utils.torch_utils import randn_tensor
+from ..pipeline_utils import DiffusionPipeline
+from .pipeline_output import FluxPipelineOutput
+
+
+if is_torch_xla_available():
+ import torch_xla.core.xla_model as xm
+
+ XLA_AVAILABLE = True
+else:
+ XLA_AVAILABLE = False
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """
+ Examples:
+ ```py
+ >>> import torch
+ >>> from diffusers import FluxPipeline
+
+ >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
+ >>> pipe.to("cuda")
+ >>> prompt = "A cat holding a sign that says hello world"
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
+ >>> # Refer to the pipeline documentation for more details.
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
+ >>> image.save("flux.png")
+ ```
+"""
+
+
+def calculate_shift(
+ image_seq_len,
+ base_seq_len: int = 256,
+ max_seq_len: int = 4096,
+ base_shift: float = 0.5,
+ max_shift: float = 1.15,
+):
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
+ b = base_shift - m * base_seq_len
+ mu = image_seq_len * m + b
+ return mu
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
+def retrieve_timesteps(
+ scheduler,
+ num_inference_steps: Optional[int] = None,
+ device: Optional[Union[str, torch.device]] = None,
+ timesteps: Optional[List[int]] = None,
+ sigmas: Optional[List[float]] = None,
+ **kwargs,
+):
+ r"""
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+ Args:
+ scheduler (`SchedulerMixin`):
+ The scheduler to get timesteps from.
+ num_inference_steps (`int`):
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
+ must be `None`.
+ device (`str` or `torch.device`, *optional*):
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
+ `num_inference_steps` and `sigmas` must be `None`.
+ sigmas (`List[float]`, *optional*):
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
+ `num_inference_steps` and `timesteps` must be `None`.
+
+ Returns:
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+ second element is the number of inference steps.
+ """
+ if timesteps is not None and sigmas is not None:
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
+ if timesteps is not None:
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accepts_timesteps:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" timestep schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ elif sigmas is not None:
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accept_sigmas:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ else:
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ return timesteps, num_inference_steps
+
+
+class FluxPipeline(
+ DiffusionPipeline,
+ FluxLoraLoaderMixin,
+ FromSingleFileMixin,
+ TextualInversionLoaderMixin,
+ FluxIPAdapterMixin,
+):
+ r"""
+ The Flux pipeline for text-to-image generation.
+
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
+
+ Args:
+ transformer ([`FluxTransformer2DModel`]):
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ text_encoder_2 ([`T5EncoderModel`]):
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
+ tokenizer_2 (`T5TokenizerFast`):
+ Second Tokenizer of class
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
+ """
+
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
+ _optional_components = ["image_encoder", "feature_extractor"]
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
+
+ def __init__(
+ self,
+ scheduler: FlowMatchEulerDiscreteScheduler,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ text_encoder_2: T5EncoderModel,
+ tokenizer_2: T5TokenizerFast,
+ transformer: FluxTransformer2DModel,
+ image_encoder: CLIPVisionModelWithProjection = None,
+ feature_extractor: CLIPImageProcessor = None,
+ variant: str = "flux",
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ text_encoder_2=text_encoder_2,
+ tokenizer=tokenizer,
+ tokenizer_2=tokenizer_2,
+ transformer=transformer,
+ scheduler=scheduler,
+ image_encoder=image_encoder,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
+ self.tokenizer_max_length = (
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
+ )
+ self.default_sample_size = 128
+ if variant not in {"flux", "chroma"}:
+ raise ValueError("`variant` must be `'flux' or `'chroma'`.")
+
+ self.variant = variant
+
+ def _get_chroma_attn_mask(self, length: torch.Tensor, max_sequence_length: int) -> torch.Tensor:
+ attention_mask = torch.zeros((length.shape[0], max_sequence_length), dtype=torch.bool, device=length.device)
+ for i, n_tokens in enumerate(length):
+ n_tokens = torch.max(n_tokens + 1, max_sequence_length)
+ attention_mask[i, :n_tokens] = True
+ return attention_mask
+
+ def _get_t5_prompt_embeds(
+ self,
+ prompt: Union[str, List[str]] = None,
+ num_images_per_prompt: int = 1,
+ max_sequence_length: int = 512,
+ device: Optional[torch.device] = None,
+ dtype: Optional[torch.dtype] = None,
+ ):
+ device = device or self._execution_device
+ dtype = dtype or self.text_encoder.dtype
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+ batch_size = len(prompt)
+
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
+
+ text_inputs = self.tokenizer_2(
+ prompt,
+ padding="max_length",
+ max_length=max_sequence_length,
+ truncation=True,
+ return_length=(self.variant == "chroma"),
+ return_overflowing_tokens=False,
+ return_tensors="pt",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because `max_sequence_length` is set to "
+ f" {max_sequence_length} tokens: {removed_text}"
+ )
+
+ prompt_embeds = self.text_encoder_2(
+ text_input_ids.to(device),
+ output_hidden_states=False,
+ attention_mask=(
+ self._get_chroma_attn_mask(text_inputs.length, max_sequence_length).to(device)
+ if self.variant == "chroma"
+ else None
+ ),
+ )[0]
+
+ dtype = self.text_encoder_2.dtype
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
+
+ _, seq_len, _ = prompt_embeds.shape
+
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ return prompt_embeds
+
+ def _get_clip_prompt_embeds(
+ self,
+ prompt: Union[str, List[str]],
+ num_images_per_prompt: int = 1,
+ device: Optional[torch.device] = None,
+ ):
+ device = device or self._execution_device
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+ batch_size = len(prompt)
+
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer_max_length,
+ truncation=True,
+ return_overflowing_tokens=False,
+ return_length=False,
+ return_tensors="pt",
+ )
+
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
+ )
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
+
+ # Use pooled output of CLIPTextModel
+ prompt_embeds = prompt_embeds.pooler_output
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
+
+ return prompt_embeds
+
+ def encode_prompt(
+ self,
+ prompt: Union[str, List[str]],
+ prompt_2: Union[str, List[str]],
+ device: Optional[torch.device] = None,
+ num_images_per_prompt: int = 1,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ max_sequence_length: int = 512,
+ lora_scale: Optional[float] = None,
+ ):
+ r"""
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+ used in all text-encoders
+ device: (`torch.device`):
+ torch device
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ lora_scale (`float`, *optional*):
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ """
+ device = device or self._execution_device
+
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
+ scale_lora_layers(self.text_encoder, lora_scale)
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
+ scale_lora_layers(self.text_encoder_2, lora_scale)
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+
+ if prompt_embeds is None:
+ prompt_2 = prompt_2 or prompt
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
+
+ # We only use the pooled prompt output from the CLIPTextModel
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
+ prompt=prompt,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ )
+ prompt_embeds = self._get_t5_prompt_embeds(
+ prompt=prompt_2,
+ num_images_per_prompt=num_images_per_prompt,
+ max_sequence_length=max_sequence_length,
+ device=device,
+ )
+
+ if self.text_encoder is not None:
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(self.text_encoder, lora_scale)
+
+ if self.text_encoder_2 is not None:
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
+
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
+
+ return prompt_embeds, pooled_prompt_embeds, text_ids
+
+ def encode_image(self, image, device, num_images_per_prompt):
+ dtype = next(self.image_encoder.parameters()).dtype
+
+ if not isinstance(image, torch.Tensor):
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
+
+ image = image.to(device=device, dtype=dtype)
+ image_embeds = self.image_encoder(image).image_embeds
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
+ return image_embeds
+
+ def prepare_ip_adapter_image_embeds(
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
+ ):
+ image_embeds = []
+ if ip_adapter_image_embeds is None:
+ if not isinstance(ip_adapter_image, list):
+ ip_adapter_image = [ip_adapter_image]
+
+ if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
+ raise ValueError(
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
+ )
+
+ for single_ip_adapter_image in ip_adapter_image:
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
+ image_embeds.append(single_image_embeds[None, :])
+ else:
+ if not isinstance(ip_adapter_image_embeds, list):
+ ip_adapter_image_embeds = [ip_adapter_image_embeds]
+
+ if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
+ raise ValueError(
+ f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
+ )
+
+ for single_image_embeds in ip_adapter_image_embeds:
+ image_embeds.append(single_image_embeds)
+
+ ip_adapter_image_embeds = []
+ for single_image_embeds in image_embeds:
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
+ single_image_embeds = single_image_embeds.to(device=device)
+ ip_adapter_image_embeds.append(single_image_embeds)
+
+ return ip_adapter_image_embeds
+
+ def check_inputs(
+ self,
+ prompt,
+ prompt_2,
+ height,
+ width,
+ negative_prompt=None,
+ negative_prompt_2=None,
+ prompt_embeds=None,
+ negative_prompt_embeds=None,
+ pooled_prompt_embeds=None,
+ negative_pooled_prompt_embeds=None,
+ callback_on_step_end_tensor_inputs=None,
+ max_sequence_length=None,
+ ):
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
+ logger.warning(
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
+ )
+
+ if callback_on_step_end_tensor_inputs is not None and not all(
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+ ):
+ raise ValueError(
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt_2 is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is None and prompt_embeds is None:
+ raise ValueError(
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
+
+ if negative_prompt is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
+ raise ValueError(
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
+ )
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
+ raise ValueError(
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
+ )
+
+ if max_sequence_length is not None and max_sequence_length > 512:
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
+
+ @staticmethod
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
+ latent_image_ids = torch.zeros(height, width, 3)
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
+
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
+
+ latent_image_ids = latent_image_ids.reshape(
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
+ )
+
+ return latent_image_ids.to(device=device, dtype=dtype)
+
+ @staticmethod
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
+
+ return latents
+
+ @staticmethod
+ def _unpack_latents(latents, height, width, vae_scale_factor):
+ batch_size, num_patches, channels = latents.shape
+
+ # VAE applies 8x compression on images but we must also account for packing which requires
+ # latent height and width to be divisible by 2.
+ height = 2 * (int(height) // (vae_scale_factor * 2))
+ width = 2 * (int(width) // (vae_scale_factor * 2))
+
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
+
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
+
+ return latents
+
+ def enable_vae_slicing(self):
+ r"""
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.vae.enable_slicing()
+
+ def disable_vae_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_slicing()
+
+ def enable_vae_tiling(self):
+ r"""
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+ processing larger images.
+ """
+ self.vae.enable_tiling()
+
+ def disable_vae_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_tiling()
+
+ def prepare_latents(
+ self,
+ batch_size,
+ num_channels_latents,
+ height,
+ width,
+ dtype,
+ device,
+ generator,
+ latents=None,
+ ):
+ # VAE applies 8x compression on images but we must also account for packing which requires
+ # latent height and width to be divisible by 2.
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
+
+ shape = (batch_size, num_channels_latents, height, width)
+
+ if latents is not None:
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
+ return latents.to(device=device, dtype=dtype), latent_image_ids
+
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
+
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
+
+ return latents, latent_image_ids
+
+ @property
+ def guidance_scale(self):
+ return self._guidance_scale
+
+ @property
+ def joint_attention_kwargs(self):
+ return self._joint_attention_kwargs
+
+ @property
+ def num_timesteps(self):
+ return self._num_timesteps
+
+ @property
+ def current_timestep(self):
+ return self._current_timestep
+
+ @property
+ def interrupt(self):
+ return self._interrupt
+
+ @torch.no_grad()
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
+ def __call__(
+ self,
+ prompt: Union[str, List[str]] = None,
+ prompt_2: Optional[Union[str, List[str]]] = None,
+ negative_prompt: Union[str, List[str]] = None,
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
+ true_cfg_scale: float = 1.0,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 28,
+ sigmas: Optional[List[float]] = None,
+ guidance_scale: float = 3.5,
+ num_images_per_prompt: Optional[int] = 1,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ ip_adapter_image: Optional[PipelineImageInput] = None,
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+ max_sequence_length: int = 512,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
+ instead.
+ prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+ will be used instead.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
+ not greater than `1`).
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ sigmas (`List[float]`, *optional*):
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
+ will be used.
+ guidance_scale (`float`, *optional*, defaults to 3.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ latents (`torch.FloatTensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
+ negative_ip_adapter_image:
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+ input argument.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
+ joint_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ callback_on_step_end (`Callable`, *optional*):
+ A function that calls at the end of each denoising steps during the inference. The function is called
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+ `callback_on_step_end_tensor_inputs`.
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+ `._callback_tensor_inputs` attribute of your pipeline class.
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
+
+ Examples:
+
+ Returns:
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
+ images.
+ """
+
+ height = height or self.default_sample_size * self.vae_scale_factor
+ width = width or self.default_sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(
+ prompt,
+ prompt_2,
+ height,
+ width,
+ negative_prompt=negative_prompt,
+ negative_prompt_2=negative_prompt_2,
+ prompt_embeds=prompt_embeds,
+ negative_prompt_embeds=negative_prompt_embeds,
+ pooled_prompt_embeds=pooled_prompt_embeds,
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+ max_sequence_length=max_sequence_length,
+ )
+
+ self._guidance_scale = guidance_scale
+ self._joint_attention_kwargs = joint_attention_kwargs
+ self._current_timestep = None
+ self._interrupt = False
+
+ # 2. Define call parameters
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ device = self._execution_device
+
+ lora_scale = (
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
+ )
+ has_neg_prompt = negative_prompt is not None or (
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
+ )
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
+ (
+ prompt_embeds,
+ pooled_prompt_embeds,
+ text_ids,
+ ) = self.encode_prompt(
+ prompt=prompt,
+ prompt_2=prompt_2,
+ prompt_embeds=prompt_embeds,
+ pooled_prompt_embeds=pooled_prompt_embeds,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ max_sequence_length=max_sequence_length,
+ lora_scale=lora_scale,
+ )
+ if do_true_cfg:
+ (
+ negative_prompt_embeds,
+ negative_pooled_prompt_embeds,
+ negative_text_ids,
+ ) = self.encode_prompt(
+ prompt=negative_prompt,
+ prompt_2=negative_prompt_2,
+ prompt_embeds=negative_prompt_embeds,
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ max_sequence_length=max_sequence_length,
+ lora_scale=lora_scale,
+ )
+
+ # 4. Prepare latent variables
+ num_channels_latents = self.transformer.config.in_channels // 4
+ latents, latent_image_ids = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ prompt_embeds.dtype,
+ device,
+ generator,
+ latents,
+ )
+
+ # 5. Prepare timesteps
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
+ image_seq_len = latents.shape[1]
+ mu = calculate_shift(
+ image_seq_len,
+ self.scheduler.config.get("base_image_seq_len", 256),
+ self.scheduler.config.get("max_image_seq_len", 4096),
+ self.scheduler.config.get("base_shift", 0.5),
+ self.scheduler.config.get("max_shift", 1.15),
+ )
+ timesteps, num_inference_steps = retrieve_timesteps(
+ self.scheduler,
+ num_inference_steps,
+ device,
+ sigmas=sigmas,
+ mu=mu,
+ )
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
+ self._num_timesteps = len(timesteps)
+
+ # handle guidance
+ if self.transformer.config.guidance_embeds:
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
+ guidance = guidance.expand(latents.shape[0])
+ else:
+ guidance = None
+
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
+ ):
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
+
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
+ ):
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
+
+ if self.joint_attention_kwargs is None:
+ self._joint_attention_kwargs = {}
+
+ image_embeds = None
+ negative_image_embeds = None
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
+ image_embeds = self.prepare_ip_adapter_image_embeds(
+ ip_adapter_image,
+ ip_adapter_image_embeds,
+ device,
+ batch_size * num_images_per_prompt,
+ )
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
+ negative_ip_adapter_image,
+ negative_ip_adapter_image_embeds,
+ device,
+ batch_size * num_images_per_prompt,
+ )
+
+ # 6. Denoising loop
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ if self.interrupt:
+ continue
+
+ self._current_timestep = t
+ if image_embeds is not None:
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
+
+ noise_pred = self.transformer(
+ hidden_states=latents,
+ timestep=timestep / 1000,
+ guidance=guidance,
+ pooled_projections=pooled_prompt_embeds,
+ encoder_hidden_states=prompt_embeds,
+ txt_ids=text_ids,
+ img_ids=latent_image_ids,
+ joint_attention_kwargs=self.joint_attention_kwargs,
+ return_dict=False,
+ )[0]
+
+ if do_true_cfg:
+ if negative_image_embeds is not None:
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
+ neg_noise_pred = self.transformer(
+ hidden_states=latents,
+ timestep=timestep / 1000,
+ guidance=guidance,
+ pooled_projections=negative_pooled_prompt_embeds,
+ encoder_hidden_states=negative_prompt_embeds,
+ txt_ids=negative_text_ids,
+ img_ids=latent_image_ids,
+ joint_attention_kwargs=self.joint_attention_kwargs,
+ return_dict=False,
+ )[0]
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents_dtype = latents.dtype
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
+
+ if latents.dtype != latents_dtype:
+ if torch.backends.mps.is_available():
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
+ latents = latents.to(latents_dtype)
+
+ if callback_on_step_end is not None:
+ callback_kwargs = {}
+ for k in callback_on_step_end_tensor_inputs:
+ callback_kwargs[k] = locals()[k]
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+ latents = callback_outputs.pop("latents", latents)
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+
+ if XLA_AVAILABLE:
+ xm.mark_step()
+
+ self._current_timestep = None
+
+ if output_type == "latent":
+ image = latents
+ else:
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
+ image = self.vae.decode(latents, return_dict=False)[0]
+ image = self.image_processor.postprocess(image, output_type=output_type)
+
+ # Offload all models
+ self.maybe_free_model_hooks()
+
+ if not return_dict:
+ return (image,)
+
+ return FluxPipelineOutput(images=image)
From 3c2865c5345f0d1ae506050bd559bdbfeead5e94 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:02:12 -0600
Subject: [PATCH 002/108] working state form hameerabbasi and iddl
(transformer)
---
.../models/transformers/transformer_chroma.py | 636 ++++++++++++++++++
1 file changed, 636 insertions(+)
create mode 100644 src/diffusers/models/transformers/transformer_chroma.py
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
new file mode 100644
index 000000000000..c542bcaaccf6
--- /dev/null
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -0,0 +1,636 @@
+# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
+from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
+from ...utils.import_utils import is_torch_npu_available
+from ...utils.torch_utils import maybe_allow_in_graph
+from ..attention import FeedForward
+from ..attention_processor import (
+ Attention,
+ AttentionProcessor,
+ FluxAttnProcessor2_0,
+ FluxAttnProcessor2_0_NPU,
+ FusedFluxAttnProcessor2_0,
+)
+from ..cache_utils import CacheMixin
+from ..embeddings import (
+ CombinedTimestepGuidanceTextProjEmbeddings,
+ CombinedTimestepTextProjChromaEmbeddings,
+ CombinedTimestepTextProjEmbeddings,
+ ChromaApproximator,
+ FluxPosEmbed,
+)
+from ..modeling_outputs import Transformer2DModelOutput
+from ..modeling_utils import ModelMixin
+from ..normalization import (
+ AdaLayerNormContinuous,
+ AdaLayerNormContinuousPruned,
+ AdaLayerNormZero,
+ AdaLayerNormZeroPruned,
+ AdaLayerNormZeroSingle,
+ AdaLayerNormZeroSinglePruned,
+)
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+INVALID_VARIANT_ERRMSG = "`variant` must be `'flux' or `'chroma'`."
+
+
+@maybe_allow_in_graph
+class FluxSingleTransformerBlock(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ mlp_ratio: float = 4.0,
+ variant: str = "flux",
+ ):
+ super().__init__()
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
+
+ if variant == "flux":
+ self.norm = AdaLayerNormZeroSingle(dim)
+ elif variant == "chroma":
+ self.norm = AdaLayerNormZeroSinglePruned(dim)
+ else:
+ raise ValueError(INVALID_VARIANT_ERRMSG)
+
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
+ self.act_mlp = nn.GELU(approximate="tanh")
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
+
+ if is_torch_npu_available():
+ deprecation_message = (
+ "Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
+ "should be set explicitly using the `set_attn_processor` method."
+ )
+ deprecate("npu_processor", "0.34.0", deprecation_message)
+ processor = FluxAttnProcessor2_0_NPU()
+ else:
+ processor = FluxAttnProcessor2_0()
+
+ self.attn = Attention(
+ query_dim=dim,
+ cross_attention_dim=None,
+ dim_head=attention_head_dim,
+ heads=num_attention_heads,
+ out_dim=dim,
+ bias=True,
+ processor=processor,
+ qk_norm="rms_norm",
+ eps=1e-6,
+ pre_only=True,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ temb: torch.Tensor,
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
+ ) -> torch.Tensor:
+ residual = hidden_states
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
+ joint_attention_kwargs = joint_attention_kwargs or {}
+ attn_output = self.attn(
+ hidden_states=norm_hidden_states,
+ image_rotary_emb=image_rotary_emb,
+ **joint_attention_kwargs,
+ )
+
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
+ gate = gate.unsqueeze(1)
+ hidden_states = gate * self.proj_out(hidden_states)
+ hidden_states = residual + hidden_states
+ if hidden_states.dtype == torch.float16:
+ hidden_states = hidden_states.clip(-65504, 65504)
+
+ return hidden_states
+
+
+@maybe_allow_in_graph
+class FluxTransformerBlock(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ qk_norm: str = "rms_norm",
+ eps: float = 1e-6,
+ variant: str = "flux",
+ ):
+ super().__init__()
+
+ if variant == "flux":
+ self.norm1 = AdaLayerNormZero(dim)
+ self.norm1_context = AdaLayerNormZero(dim)
+ elif variant == "chroma":
+ self.norm1 = AdaLayerNormZeroPruned(dim)
+ self.norm1_context = AdaLayerNormZeroPruned(dim)
+ else:
+ raise ValueError(INVALID_VARIANT_ERRMSG)
+
+ self.attn = Attention(
+ query_dim=dim,
+ cross_attention_dim=None,
+ added_kv_proj_dim=dim,
+ dim_head=attention_head_dim,
+ heads=num_attention_heads,
+ out_dim=dim,
+ context_pre_only=False,
+ bias=True,
+ processor=FluxAttnProcessor2_0(),
+ qk_norm=qk_norm,
+ eps=eps,
+ )
+
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
+
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+ self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor,
+ temb: torch.Tensor,
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ temb_img, temb_txt = temb[:, :6], temb[:, 6:]
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
+
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
+ encoder_hidden_states, emb=temb_txt
+ )
+ joint_attention_kwargs = joint_attention_kwargs or {}
+ # Attention.
+ attention_outputs = self.attn(
+ hidden_states=norm_hidden_states,
+ encoder_hidden_states=norm_encoder_hidden_states,
+ image_rotary_emb=image_rotary_emb,
+ **joint_attention_kwargs,
+ )
+
+ if len(attention_outputs) == 2:
+ attn_output, context_attn_output = attention_outputs
+ elif len(attention_outputs) == 3:
+ attn_output, context_attn_output, ip_attn_output = attention_outputs
+
+ # Process attention outputs for the `hidden_states`.
+ attn_output = gate_msa.unsqueeze(1) * attn_output
+ hidden_states = hidden_states + attn_output
+
+ norm_hidden_states = self.norm2(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+ ff_output = self.ff(norm_hidden_states)
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
+
+ hidden_states = hidden_states + ff_output
+ if len(attention_outputs) == 3:
+ hidden_states = hidden_states + ip_attn_output
+
+ # Process attention outputs for the `encoder_hidden_states`.
+
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
+
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
+
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
+ if encoder_hidden_states.dtype == torch.float16:
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
+
+ return encoder_hidden_states, hidden_states
+
+
+class FluxTransformer2DModel(
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin
+):
+ """
+ The Transformer model introduced in Flux.
+
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
+
+ Args:
+ patch_size (`int`, defaults to `1`):
+ Patch size to turn the input data into small patches.
+ in_channels (`int`, defaults to `64`):
+ The number of channels in the input.
+ out_channels (`int`, *optional*, defaults to `None`):
+ The number of channels in the output. If not specified, it defaults to `in_channels`.
+ num_layers (`int`, defaults to `19`):
+ The number of layers of dual stream DiT blocks to use.
+ num_single_layers (`int`, defaults to `38`):
+ The number of layers of single stream DiT blocks to use.
+ attention_head_dim (`int`, defaults to `128`):
+ The number of dimensions to use for each attention head.
+ num_attention_heads (`int`, defaults to `24`):
+ The number of attention heads to use.
+ joint_attention_dim (`int`, defaults to `4096`):
+ The number of dimensions to use for the joint attention (embedding/channel dimension of
+ `encoder_hidden_states`).
+ pooled_projection_dim (`int`, defaults to `768`):
+ The number of dimensions to use for the pooled projection.
+ guidance_embeds (`bool`, defaults to `False`):
+ Whether to use guidance embeddings for guidance-distilled variant of the model.
+ axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
+ The dimensions to use for the rotary positional embeddings.
+ """
+
+ _supports_gradient_checkpointing = True
+ _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
+ _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
+
+ @register_to_config
+ def __init__(
+ self,
+ patch_size: int = 1,
+ in_channels: int = 64,
+ out_channels: Optional[int] = None,
+ num_layers: int = 19,
+ num_single_layers: int = 38,
+ attention_head_dim: int = 128,
+ num_attention_heads: int = 24,
+ joint_attention_dim: int = 4096,
+ pooled_projection_dim: int = 768,
+ guidance_embeds: bool = False,
+ axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
+ variant: str = "flux",
+ approximator_in_factor: int = 16,
+ approximator_hidden_dim: int = 5120,
+ approximator_layers: int = 5,
+ ):
+ super().__init__()
+ self.out_channels = out_channels or in_channels
+ self.inner_dim = num_attention_heads * attention_head_dim
+
+ self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
+
+ if variant == "flux":
+ text_time_guidance_cls = (
+ CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
+ )
+ self.time_text_embed = text_time_guidance_cls(
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
+ )
+ elif variant == "chroma":
+ self.time_text_embed = CombinedTimestepTextProjChromaEmbeddings(
+ factor=approximator_in_factor,
+ hidden_dim=approximator_hidden_dim,
+ out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
+ embedding_dim=self.inner_dim,
+ n_layers=approximator_layers,
+ )
+ self.distilled_guidance_layer = ChromaApproximator(in_dim=64, out_dim=3072, hidden_dim=5120, n_layers=5)
+ else:
+ raise ValueError(INVALID_VARIANT_ERRMSG)
+
+ self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
+ self.x_embedder = nn.Linear(in_channels, self.inner_dim)
+
+ self.transformer_blocks = nn.ModuleList(
+ [
+ FluxTransformerBlock(
+ dim=self.inner_dim,
+ num_attention_heads=num_attention_heads,
+ attention_head_dim=attention_head_dim,
+ variant=variant,
+ )
+ for _ in range(num_layers)
+ ]
+ )
+
+ self.single_transformer_blocks = nn.ModuleList(
+ [
+ FluxSingleTransformerBlock(
+ dim=self.inner_dim,
+ num_attention_heads=num_attention_heads,
+ attention_head_dim=attention_head_dim,
+ variant=variant,
+ )
+ for _ in range(num_single_layers)
+ ]
+ )
+
+ norm_out_cls = AdaLayerNormContinuous if variant != "chroma" else AdaLayerNormContinuousPruned
+ self.norm_out = norm_out_cls(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
+
+ self.gradient_checkpointing = False
+
+ @property
+ def is_chroma(self) -> bool:
+ return isinstance(self.time_text_embed, CombinedTimestepTextProjChromaEmbeddings)
+
+ @property
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
+ if hasattr(module, "get_processor"):
+ processors[f"{name}.processor"] = module.get_processor()
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
+ r"""
+ Sets the attention processor to use to compute attention.
+
+ Parameters:
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ for **all** `Attention` layers.
+
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
+ processor. This is strongly recommended when setting trainable attention processors.
+
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
+ are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is 🧪 experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ self.set_attn_processor(FusedFluxAttnProcessor2_0())
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is 🧪 experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor = None,
+ pooled_projections: torch.Tensor = None,
+ timestep: torch.LongTensor = None,
+ img_ids: torch.Tensor = None,
+ txt_ids: torch.Tensor = None,
+ guidance: torch.Tensor = None,
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
+ controlnet_block_samples=None,
+ controlnet_single_block_samples=None,
+ return_dict: bool = True,
+ controlnet_blocks_repeat: bool = False,
+ ) -> Union[torch.Tensor, Transformer2DModelOutput]:
+ """
+ The [`FluxTransformer2DModel`] forward method.
+
+ Args:
+ hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
+ Input `hidden_states`.
+ encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
+ pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
+ from the embeddings of input conditions.
+ timestep ( `torch.LongTensor`):
+ Used to indicate denoising step.
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
+ A list of tensors that if specified are added to the residuals of transformer blocks.
+ joint_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
+ tuple.
+
+ Returns:
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
+ `tuple` where the first element is the sample tensor.
+ """
+ if joint_attention_kwargs is not None:
+ joint_attention_kwargs = joint_attention_kwargs.copy()
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
+ else:
+ lora_scale = 1.0
+
+ if USE_PEFT_BACKEND:
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
+ scale_lora_layers(self, lora_scale)
+ else:
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
+ logger.warning(
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
+ )
+
+ is_chroma = self.is_chroma
+ hidden_states = self.x_embedder(hidden_states)
+
+ timestep = timestep.to(hidden_states.dtype) * 1000
+ if guidance is not None:
+ guidance = guidance.to(hidden_states.dtype) * 1000
+
+ if not is_chroma:
+ temb = (
+ self.time_text_embed(timestep, pooled_projections)
+ if guidance is None
+ else self.time_text_embed(timestep, guidance, pooled_projections)
+ )
+ else:
+ input_vec = self.time_text_embed(timestep, guidance, pooled_projections)
+ pooled_temb = self.distilled_guidance_layer(input_vec)
+
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
+
+ if txt_ids.ndim == 3:
+ logger.warning(
+ "Passing `txt_ids` 3d torch.Tensor is deprecated."
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
+ )
+ txt_ids = txt_ids[0]
+ if img_ids.ndim == 3:
+ logger.warning(
+ "Passing `img_ids` 3d torch.Tensor is deprecated."
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
+ )
+ img_ids = img_ids[0]
+
+ ids = torch.cat((txt_ids, img_ids), dim=0)
+ image_rotary_emb = self.pos_embed(ids)
+
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
+ ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
+ joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
+
+ for index_block, block in enumerate(self.transformer_blocks):
+ if is_chroma:
+ img_offset = 3 * len(self.single_transformer_blocks)
+ txt_offset = img_offset + 6 * len(self.transformer_blocks)
+ img_modulation = img_offset + 6 * index_block
+ text_modulation = txt_offset + 6 * index_block
+ temb = torch.cat(
+ (
+ pooled_temb[:, img_modulation : img_modulation + 6],
+ pooled_temb[:, text_modulation : text_modulation + 6],
+ ),
+ dim=1,
+ )
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
+ encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
+ block,
+ hidden_states,
+ encoder_hidden_states,
+ temb,
+ image_rotary_emb,
+ )
+
+ else:
+ encoder_hidden_states, hidden_states = block(
+ hidden_states=hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ temb=temb,
+ image_rotary_emb=image_rotary_emb,
+ joint_attention_kwargs=joint_attention_kwargs,
+ )
+
+ # controlnet residual
+ if controlnet_block_samples is not None:
+ interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
+ interval_control = int(np.ceil(interval_control))
+ # For Xlabs ControlNet.
+ if controlnet_blocks_repeat:
+ hidden_states = (
+ hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
+ )
+ else:
+ hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
+
+ for index_block, block in enumerate(self.single_transformer_blocks):
+ if is_chroma:
+ start_idx = 3 * index_block
+ temb = pooled_temb[:, start_idx : start_idx + 3]
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
+ hidden_states = self._gradient_checkpointing_func(
+ block,
+ hidden_states,
+ temb,
+ image_rotary_emb,
+ )
+
+ else:
+ hidden_states = block(
+ hidden_states=hidden_states,
+ temb=temb,
+ image_rotary_emb=image_rotary_emb,
+ joint_attention_kwargs=joint_attention_kwargs,
+ )
+
+ # controlnet residual
+ if controlnet_single_block_samples is not None:
+ interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
+ interval_control = int(np.ceil(interval_control))
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ + controlnet_single_block_samples[index_block // interval_control]
+ )
+
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+
+ if is_chroma:
+ temb = pooled_temb[:, -2:]
+ hidden_states = self.norm_out(hidden_states, temb)
+ output = self.proj_out(hidden_states)
+
+ if USE_PEFT_BACKEND:
+ # remove `lora_scale` from each PEFT layer
+ unscale_lora_layers(self, lora_scale)
+
+ if not return_dict:
+ return (output,)
+
+ return Transformer2DModelOutput(sample=output)
From e271af9495435016e2af1230e66ea242e624c720 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:03:10 -0600
Subject: [PATCH 003/108] working state (normalization)
---
src/diffusers/models/normalization.py | 119 +++++++++++++++++++++++++-
1 file changed, 116 insertions(+), 3 deletions(-)
diff --git a/src/diffusers/models/normalization.py b/src/diffusers/models/normalization.py
index 4a512c5cb166..f2b71bb6888e 100644
--- a/src/diffusers/models/normalization.py
+++ b/src/diffusers/models/normalization.py
@@ -171,6 +171,46 @@ def forward(
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
+class AdaLayerNormZeroPruned(nn.Module):
+ r"""
+ Norm layer adaptive layer norm zero (adaLN-Zero).
+
+ Parameters:
+ embedding_dim (`int`): The size of each embedding vector.
+ num_embeddings (`int`): The size of the embeddings dictionary.
+ """
+
+ def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
+ super().__init__()
+ if num_embeddings is not None:
+ self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
+ else:
+ self.emb = None
+
+ if norm_type == "layer_norm":
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
+ elif norm_type == "fp32_layer_norm":
+ self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
+ else:
+ raise ValueError(
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
+ )
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ timestep: Optional[torch.Tensor] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ hidden_dtype: Optional[torch.dtype] = None,
+ emb: Optional[torch.Tensor] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ if self.emb is not None:
+ emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.squeeze(0).chunk(6, dim=0)
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
+
+
class AdaLayerNormZeroSingle(nn.Module):
r"""
Norm layer adaptive layer norm zero (adaLN-Zero).
@@ -203,6 +243,35 @@ def forward(
return x, gate_msa
+class AdaLayerNormZeroSinglePruned(nn.Module):
+ r"""
+ Norm layer adaptive layer norm zero (adaLN-Zero).
+
+ Parameters:
+ embedding_dim (`int`): The size of each embedding vector.
+ num_embeddings (`int`): The size of the embeddings dictionary.
+ """
+
+ def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
+ super().__init__()
+
+ if norm_type == "layer_norm":
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
+ else:
+ raise ValueError(
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
+ )
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ emb: Optional[torch.Tensor] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ shift_msa, scale_msa, gate_msa = emb.squeeze(0).chunk(3, dim=0)
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
+ return x, gate_msa
+
+
class LuminaRMSNormZero(nn.Module):
"""
Norm layer adaptive RMS normalization zero.
@@ -237,7 +306,7 @@ class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
- As proposed in PixArt-Alpha (see: https://huggingface.co/papers/2310.00426; Section 2.3).
+ As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
@@ -305,6 +374,50 @@ def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
return x
+class AdaLayerNormContinuousPruned(nn.Module):
+ r"""
+ Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
+
+ Args:
+ embedding_dim (`int`): Embedding dimension to use during projection.
+ conditioning_embedding_dim (`int`): Dimension of the input condition.
+ elementwise_affine (`bool`, defaults to `True`):
+ Boolean flag to denote if affine transformation should be applied.
+ eps (`float`, defaults to 1e-5): Epsilon factor.
+ bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use.
+ norm_type (`str`, defaults to `"layer_norm"`):
+ Normalization layer to use. Values supported: "layer_norm", "rms_norm".
+ """
+
+ def __init__(
+ self,
+ embedding_dim: int,
+ conditioning_embedding_dim: int,
+ # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
+ # because the output is immediately scaled and shifted by the projected conditioning embeddings.
+ # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
+ # However, this is how it was implemented in the original code, and it's rather likely you should
+ # set `elementwise_affine` to False.
+ elementwise_affine=True,
+ eps=1e-5,
+ bias=True,
+ norm_type="layer_norm",
+ ):
+ super().__init__()
+ if norm_type == "layer_norm":
+ self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
+ elif norm_type == "rms_norm":
+ self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
+ else:
+ raise ValueError(f"unknown norm_type {norm_type}")
+
+ def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
+ # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
+ shift, scale = torch.chunk(emb.squeeze(0).to(x.dtype), 2, dim=0)
+ x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
+ return x
+
+
class AdaLayerNormContinuous(nn.Module):
r"""
Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
@@ -510,7 +623,7 @@ def forward(self, input):
class RMSNorm(nn.Module):
r"""
- RMS Norm as introduced in https://huggingface.co/papers/1910.07467 by Zhang et al.
+ RMS Norm as introduced in https://arxiv.org/abs/1910.07467 by Zhang et al.
Args:
dim (`int`): Number of dimensions to use for `weights`. Only effective when `elementwise_affine` is True.
@@ -600,7 +713,7 @@ def forward(self, hidden_states):
class GlobalResponseNorm(nn.Module):
r"""
- Global response normalization as introduced in ConvNeXt-v2 (https://huggingface.co/papers/2301.00808).
+ Global response normalization as introduced in ConvNeXt-v2 (https://arxiv.org/abs/2301.00808).
Args:
dim (`int`): Number of dimensions to use for the `gamma` and `beta`.
From 15f2bd5c3971f94475eacc01c3ac5ac802e32461 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:05:59 -0600
Subject: [PATCH 004/108] working state (embeddings)
---
src/diffusers/models/embeddings.py | 54 ++++++++++++++++++++++++++++--
1 file changed, 51 insertions(+), 3 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index c25e9997e3fb..8aa2ea5841e9 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -31,7 +31,7 @@ def get_timestep_embedding(
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
-):
+) -> torch.Tensor:
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
@@ -1327,7 +1327,7 @@ def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shif
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
- def forward(self, timesteps):
+ def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
@@ -1401,7 +1401,7 @@ class ImagePositionalEmbeddings(nn.Module):
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
- For more details, see figure 10 of the dall-e paper: https://huggingface.co/papers/2102.12092
+ For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
@@ -1637,6 +1637,35 @@ def forward(self, timestep, guidance, pooled_projection):
return conditioning
+class CombinedTimestepTextProjChromaEmbeddings(nn.Module):
+ def __init__(self, factor: int, hidden_dim: int, out_dim: int, n_layers: int, embedding_dim: int):
+ super().__init__()
+
+ self.time_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
+ self.guidance_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
+
+ self.register_buffer(
+ "mod_proj",
+ get_timestep_embedding(torch.arange(out_dim)*1000, 2 * factor, flip_sin_to_cos=True, downscale_freq_shift=0, ),
+ persistent=False,
+ )
+
+ def forward(
+ self, timestep: torch.Tensor, guidance: Optional[torch.Tensor], pooled_projections: torch.Tensor
+ ) -> torch.Tensor:
+ mod_index_length = self.mod_proj.shape[0]
+ timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
+ guidance_proj = self.guidance_proj(torch.tensor([0])).to(dtype=timestep.dtype, device=timestep.device)
+
+ mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
+ timestep_guidance = (
+ torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
+ )
+ input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
+
+ return input_vec
+
+
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
super().__init__()
@@ -2230,6 +2259,25 @@ def forward(self, caption):
return hidden_states
+class ChromaApproximator(nn.Module):
+ def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5):
+ super().__init__()
+ self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
+ self.layers = nn.ModuleList(
+ [PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)]
+ )
+ self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)])
+ self.out_proj = nn.Linear(hidden_dim, out_dim)
+
+ def forward(self, x):
+ x = self.in_proj(x)
+
+ for layer, norms in zip(self.layers, self.norms):
+ x = x + layer(norms(x))
+
+ return self.out_proj(x)
+
+
class IPAdapterPlusImageProjectionBlock(nn.Module):
def __init__(
self,
From 32e6a006cfe486ba774acf2920ffcf5382ed2449 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:13:32 -0600
Subject: [PATCH 005/108] add chroma loader
---
src/diffusers/loaders/single_file_utils.py | 166 +++++++++++++++++++++
1 file changed, 166 insertions(+)
diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py
index 0f762b949d47..aace8fc7bffb 100644
--- a/src/diffusers/loaders/single_file_utils.py
+++ b/src/diffusers/loaders/single_file_utils.py
@@ -3310,3 +3310,169 @@ def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs):
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
return checkpoint
+
+def convert_chroma_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
+ converted_state_dict = {}
+ keys = list(checkpoint.keys())
+
+ for k in keys:
+ if "model.diffusion_model." in k:
+ checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
+
+ num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 # noqa: C401
+ num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 # noqa: C401
+ num_guidance_layers = list(set(int(k.split(".", 3)[2]) for k in checkpoint if "distilled_guidance_layer.layers." in k))[-1] + 1 # noqa: C401
+ mlp_ratio = 4.0
+ inner_dim = 3072
+
+ # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
+ # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
+ def swap_scale_shift(weight):
+ shift, scale = weight.chunk(2, dim=0)
+ new_weight = torch.cat([scale, shift], dim=0)
+ return new_weight
+
+ # guidance
+ converted_state_dict["time_text_embed.embedder.in_proj.bias"] = checkpoint.pop(
+ "distilled_guidance_layer.in_proj.bias"
+ )
+ converted_state_dict["time_text_embed.embedder.in_proj.weight"] = checkpoint.pop(
+ "distilled_guidance_layer.in_proj.weight"
+ )
+ converted_state_dict["time_text_embed.embedder.out_proj.bias"] = checkpoint.pop(
+ "distilled_guidance_layer.out_proj.bias"
+ )
+ converted_state_dict["time_text_embed.embedder.out_proj.weight"] = checkpoint.pop(
+ "distilled_guidance_layer.out_proj.weight"
+ )
+ for i in range(num_guidance_layers):
+ block_prefix = f"time_text_embed.embedder.layers.{i}."
+ converted_state_dict[f"{block_prefix}linear_1.bias"] = checkpoint.pop(
+ f"distilled_guidance_layer.layers.{i}.in_layer.bias"
+ )
+ converted_state_dict[f"{block_prefix}linear_1.weight"] = checkpoint.pop(
+ f"distilled_guidance_layer.layers.{i}.in_layer.weight"
+ )
+ converted_state_dict[f"{block_prefix}linear_2.bias"] = checkpoint.pop(
+ f"distilled_guidance_layer.layers.{i}.out_layer.bias"
+ )
+ converted_state_dict[f"{block_prefix}linear_2.weight"] = checkpoint.pop(
+ f"distilled_guidance_layer.layers.{i}.out_layer.weight"
+ )
+ converted_state_dict[f"time_text_embed.embedder.norms.{i}.weight"] = checkpoint.pop(
+ f"distilled_guidance_layer.norms.{i}.scale"
+ )
+
+ # context_embedder
+ converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
+ converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")
+
+ # x_embedder
+ converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
+ converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")
+
+ # double transformer blocks
+ for i in range(num_layers):
+ block_prefix = f"transformer_blocks.{i}."
+ # Q, K, V
+ sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
+ context_q, context_k, context_v = torch.chunk(
+ checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
+ )
+ sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
+ checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
+ )
+ context_q_bias, context_k_bias, context_v_bias = torch.chunk(
+ checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
+ )
+ converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
+ converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
+ converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
+ converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
+ converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
+ converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
+ converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
+ converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
+ converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
+ converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
+ converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
+ converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
+ # qk_norm
+ converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.img_attn.norm.query_norm.scale"
+ )
+ converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.img_attn.norm.key_norm.scale"
+ )
+ converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
+ )
+ converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
+ )
+ # ff img_mlp
+ converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.img_mlp.0.weight"
+ )
+ converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
+ converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
+ converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
+ converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_mlp.0.weight"
+ )
+ converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_mlp.0.bias"
+ )
+ converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_mlp.2.weight"
+ )
+ converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_mlp.2.bias"
+ )
+ # output projections.
+ converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.img_attn.proj.weight"
+ )
+ converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
+ f"double_blocks.{i}.img_attn.proj.bias"
+ )
+ converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_attn.proj.weight"
+ )
+ converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
+ f"double_blocks.{i}.txt_attn.proj.bias"
+ )
+
+ # single transformer blocks
+ for i in range(num_single_layers):
+ block_prefix = f"single_transformer_blocks.{i}."
+ # Q, K, V, mlp
+ mlp_hidden_dim = int(inner_dim * mlp_ratio)
+ split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
+ q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
+ q_bias, k_bias, v_bias, mlp_bias = torch.split(
+ checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
+ )
+ converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
+ converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
+ converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
+ converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
+ converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
+ converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
+ converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
+ converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
+ # qk norm
+ converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
+ f"single_blocks.{i}.norm.query_norm.scale"
+ )
+ converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
+ f"single_blocks.{i}.norm.key_norm.scale"
+ )
+ # output projections.
+ converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
+ converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")
+
+ converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
+ converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
+
+ return converted_state_dict
From bc36a0d883bc594ec49ed4c01537aa827a8202c1 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:15:19 -0600
Subject: [PATCH 006/108] add chroma to mappings
---
src/diffusers/loaders/single_file_model.py | 5 +++++
1 file changed, 5 insertions(+)
diff --git a/src/diffusers/loaders/single_file_model.py b/src/diffusers/loaders/single_file_model.py
index 6919c4949d59..82e4db7283cc 100644
--- a/src/diffusers/loaders/single_file_model.py
+++ b/src/diffusers/loaders/single_file_model.py
@@ -30,6 +30,7 @@
convert_auraflow_transformer_checkpoint_to_diffusers,
convert_autoencoder_dc_checkpoint_to_diffusers,
convert_controlnet_checkpoint,
+ convert_chroma_transformer_checkpoint_to_diffusers,
convert_flux_transformer_checkpoint_to_diffusers,
convert_hidream_transformer_to_diffusers,
convert_hunyuan_video_transformer_to_diffusers,
@@ -97,6 +98,10 @@
"checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
},
+ "ChromaTransformer2DModel": {
+ "checkpoint_mapping_fn": convert_chroma_transformer_checkpoint_to_diffusers,
+ "default_subfolder": "transformer",
+ }
"LTXVideoTransformer3DModel": {
"checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
From 33ea0b65a42f65965fe74ba1ab778b86d0d05919 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:25:19 -0600
Subject: [PATCH 007/108] add chroma to transformer init
---
src/diffusers/models/transformers/__init__.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py
index e7b8ba55ca61..cc03a0ccbcdf 100755
--- a/src/diffusers/models/transformers/__init__.py
+++ b/src/diffusers/models/transformers/__init__.py
@@ -17,6 +17,7 @@
from .t5_film_transformer import T5FilmDecoder
from .transformer_2d import Transformer2DModel
from .transformer_allegro import AllegroTransformer3DModel
+ from .transformer_chroma import ChromaTransformer2DModel
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
from .transformer_cogview4 import CogView4Transformer2DModel
from .transformer_cosmos import CosmosTransformer3DModel
From 22ecd19f91039705f90a81c5cc1afa2d8413a26b Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Mon, 9 Jun 2025 21:32:52 -0600
Subject: [PATCH 008/108] take out variant stuff
---
.../models/transformers/transformer_chroma.py | 119 ++++++------------
1 file changed, 36 insertions(+), 83 deletions(-)
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
index c542bcaaccf6..1f726f5cb4b0 100644
--- a/src/diffusers/models/transformers/transformer_chroma.py
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -43,40 +43,27 @@
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import (
- AdaLayerNormContinuous,
AdaLayerNormContinuousPruned,
- AdaLayerNormZero,
AdaLayerNormZeroPruned,
- AdaLayerNormZeroSingle,
AdaLayerNormZeroSinglePruned,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
-INVALID_VARIANT_ERRMSG = "`variant` must be `'flux' or `'chroma'`."
-
@maybe_allow_in_graph
-class FluxSingleTransformerBlock(nn.Module):
+class ChromaSingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 4.0,
- variant: str = "flux",
):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
-
- if variant == "flux":
- self.norm = AdaLayerNormZeroSingle(dim)
- elif variant == "chroma":
- self.norm = AdaLayerNormZeroSinglePruned(dim)
- else:
- raise ValueError(INVALID_VARIANT_ERRMSG)
-
+ self.norm = AdaLayerNormZeroSinglePruned(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
@@ -132,7 +119,7 @@ def forward(
@maybe_allow_in_graph
-class FluxTransformerBlock(nn.Module):
+class ChromaTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
@@ -140,18 +127,10 @@ def __init__(
attention_head_dim: int,
qk_norm: str = "rms_norm",
eps: float = 1e-6,
- variant: str = "flux",
):
super().__init__()
-
- if variant == "flux":
- self.norm1 = AdaLayerNormZero(dim)
- self.norm1_context = AdaLayerNormZero(dim)
- elif variant == "chroma":
- self.norm1 = AdaLayerNormZeroPruned(dim)
- self.norm1_context = AdaLayerNormZeroPruned(dim)
- else:
- raise ValueError(INVALID_VARIANT_ERRMSG)
+ self.norm1 = AdaLayerNormZeroPruned(dim)
+ self.norm1_context = AdaLayerNormZeroPruned(dim)
self.attn = Attention(
query_dim=dim,
@@ -231,13 +210,13 @@ def forward(
return encoder_hidden_states, hidden_states
-class FluxTransformer2DModel(
+class ChromaTransformer2DModel(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin
):
"""
- The Transformer model introduced in Flux.
+ The Transformer model introduced in Flux, modified for Chroma.
- Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
+ Reference: https://huggingface.co/lodestones/Chroma
Args:
patch_size (`int`, defaults to `1`):
@@ -266,7 +245,7 @@ class FluxTransformer2DModel(
"""
_supports_gradient_checkpointing = True
- _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
+ _no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
@register_to_config
@@ -283,7 +262,6 @@ def __init__(
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
- variant: str = "flux",
approximator_in_factor: int = 16,
approximator_hidden_dim: int = 5120,
approximator_layers: int = 5,
@@ -294,31 +272,21 @@ def __init__(
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
- if variant == "flux":
- text_time_guidance_cls = (
- CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
- )
- self.time_text_embed = text_time_guidance_cls(
- embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
- )
- elif variant == "chroma":
- self.time_text_embed = CombinedTimestepTextProjChromaEmbeddings(
- factor=approximator_in_factor,
- hidden_dim=approximator_hidden_dim,
- out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
- embedding_dim=self.inner_dim,
- n_layers=approximator_layers,
- )
- self.distilled_guidance_layer = ChromaApproximator(in_dim=64, out_dim=3072, hidden_dim=5120, n_layers=5)
- else:
- raise ValueError(INVALID_VARIANT_ERRMSG)
+ self.time_text_embed = CombinedTimestepTextProjChromaEmbeddings(
+ factor=approximator_in_factor,
+ hidden_dim=approximator_hidden_dim,
+ out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
+ embedding_dim=self.inner_dim,
+ n_layers=approximator_layers,
+ )
+ self.distilled_guidance_layer = ChromaApproximator(in_dim=64, out_dim=3072, hidden_dim=5120, n_layers=5)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
- FluxTransformerBlock(
+ ChromaTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
@@ -330,7 +298,7 @@ def __init__(
self.single_transformer_blocks = nn.ModuleList(
[
- FluxSingleTransformerBlock(
+ ChromaSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
@@ -340,16 +308,12 @@ def __init__(
]
)
- norm_out_cls = AdaLayerNormContinuous if variant != "chroma" else AdaLayerNormContinuousPruned
+ norm_out_cls = AdaLayerNormContinuousPruned
self.norm_out = norm_out_cls(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
- @property
- def is_chroma(self) -> bool:
- return isinstance(self.time_text_embed, CombinedTimestepTextProjChromaEmbeddings)
-
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
@@ -506,22 +470,14 @@ def forward(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
- is_chroma = self.is_chroma
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
- if not is_chroma:
- temb = (
- self.time_text_embed(timestep, pooled_projections)
- if guidance is None
- else self.time_text_embed(timestep, guidance, pooled_projections)
- )
- else:
- input_vec = self.time_text_embed(timestep, guidance, pooled_projections)
- pooled_temb = self.distilled_guidance_layer(input_vec)
+ input_vec = self.time_text_embed(timestep, guidance, pooled_projections)
+ pooled_temb = self.distilled_guidance_layer(input_vec)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
@@ -547,18 +503,17 @@ def forward(
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
for index_block, block in enumerate(self.transformer_blocks):
- if is_chroma:
- img_offset = 3 * len(self.single_transformer_blocks)
- txt_offset = img_offset + 6 * len(self.transformer_blocks)
- img_modulation = img_offset + 6 * index_block
- text_modulation = txt_offset + 6 * index_block
- temb = torch.cat(
- (
- pooled_temb[:, img_modulation : img_modulation + 6],
- pooled_temb[:, text_modulation : text_modulation + 6],
- ),
- dim=1,
- )
+ img_offset = 3 * len(self.single_transformer_blocks)
+ txt_offset = img_offset + 6 * len(self.transformer_blocks)
+ img_modulation = img_offset + 6 * index_block
+ text_modulation = txt_offset + 6 * index_block
+ temb = torch.cat(
+ (
+ pooled_temb[:, img_modulation : img_modulation + 6],
+ pooled_temb[:, text_modulation : text_modulation + 6],
+ ),
+ dim=1,
+ )
if torch.is_grad_enabled() and self.gradient_checkpointing:
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
block,
@@ -591,9 +546,8 @@ def forward(
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
- if is_chroma:
- start_idx = 3 * index_block
- temb = pooled_temb[:, start_idx : start_idx + 3]
+ start_idx = 3 * index_block
+ temb = pooled_temb[:, start_idx : start_idx + 3]
if torch.is_grad_enabled() and self.gradient_checkpointing:
hidden_states = self._gradient_checkpointing_func(
block,
@@ -621,8 +575,7 @@ def forward(
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
- if is_chroma:
- temb = pooled_temb[:, -2:]
+ temb = pooled_temb[:, -2:]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
From b0df9691d2ec5caa42a9310eef250bef513f15f7 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Tue, 10 Jun 2025 02:09:52 -0600
Subject: [PATCH 009/108] get decently far in changing variant stuff
---
.../pipelines/chroma/pipeline_chroma.py | 182 ++----------------
1 file changed, 21 insertions(+), 161 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 50c0c4cedc57..f6d2e366e48e 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -40,7 +40,7 @@
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
-from .pipeline_output import FluxPipelineOutput
+from .pipeline_output import ChromaPipelineOutput
if is_torch_xla_available():
@@ -57,15 +57,13 @@
Examples:
```py
>>> import torch
- >>> from diffusers import FluxPipeline
+ >>> from diffusers import ChromaPipeline
- >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
+ >>> pipe = ChromaPipeline.from_single_file("chroma-unlocked-v35-detail-calibrated.safetensors", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
- >>> # Depending on the variant being used, the pipeline call will slightly vary.
- >>> # Refer to the pipeline documentation for more details.
- >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
- >>> image.save("flux.png")
+ >>> image = pipe(prompt, num_inference_steps=28, guidance_scale=4.0).images[0]
+ >>> image.save("chroma.png")
```
"""
@@ -143,7 +141,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
-class FluxPipeline(
+class ChromaPipeline(
DiffusionPipeline,
FluxLoraLoaderMixin,
FromSingleFileMixin,
@@ -151,27 +149,21 @@ class FluxPipeline(
FluxIPAdapterMixin,
):
r"""
- The Flux pipeline for text-to-image generation.
+ The Chroma pipeline for text-to-image generation.
- Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
+ Reference: https://huggingface.co/lodestones/Chroma/
Args:
- transformer ([`FluxTransformer2DModel`]):
+ transformer ([`ChromaTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder ([`CLIPTextModel`]):
- [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
- the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
- text_encoder_2 ([`T5EncoderModel`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation
+ text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
- tokenizer (`CLIPTokenizer`):
- Tokenizer of class
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
- tokenizer_2 (`T5TokenizerFast`):
+ tokenizer (`T5TokenizerFast`):
Second Tokenizer of class
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
"""
@@ -184,11 +176,9 @@ def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
- text_encoder: CLIPTextModel,
- tokenizer: CLIPTokenizer,
- text_encoder_2: T5EncoderModel,
- tokenizer_2: T5TokenizerFast,
- transformer: FluxTransformer2DModel,
+ text_encoder: T5EncoderModel,
+ tokenizer: T5TokenizerFast,
+ transformer: ChromaTransformer2DModel,
image_encoder: CLIPVisionModelWithProjection = None,
feature_extractor: CLIPImageProcessor = None,
variant: str = "flux",
@@ -198,9 +188,7 @@ def __init__(
self.register_modules(
vae=vae,
text_encoder=text_encoder,
- text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
- tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
image_encoder=image_encoder,
@@ -214,10 +202,6 @@ def __init__(
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
self.default_sample_size = 128
- if variant not in {"flux", "chroma"}:
- raise ValueError("`variant` must be `'flux' or `'chroma'`.")
-
- self.variant = variant
def _get_chroma_attn_mask(self, length: torch.Tensor, max_sequence_length: int) -> torch.Tensor:
attention_mask = torch.zeros((length.shape[0], max_sequence_length), dtype=torch.bool, device=length.device)
@@ -248,7 +232,7 @@ def _get_t5_prompt_embeds(
padding="max_length",
max_length=max_sequence_length,
truncation=True,
- return_length=(self.variant == "chroma"),
+ return_length=True,
return_overflowing_tokens=False,
return_tensors="pt",
)
@@ -267,8 +251,6 @@ def _get_t5_prompt_embeds(
output_hidden_states=False,
attention_mask=(
self._get_chroma_attn_mask(text_inputs.length, max_sequence_length).to(device)
- if self.variant == "chroma"
- else None
),
)[0]
@@ -283,58 +265,12 @@ def _get_t5_prompt_embeds(
return prompt_embeds
- def _get_clip_prompt_embeds(
- self,
- prompt: Union[str, List[str]],
- num_images_per_prompt: int = 1,
- device: Optional[torch.device] = None,
- ):
- device = device or self._execution_device
-
- prompt = [prompt] if isinstance(prompt, str) else prompt
- batch_size = len(prompt)
-
- if isinstance(self, TextualInversionLoaderMixin):
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
-
- text_inputs = self.tokenizer(
- prompt,
- padding="max_length",
- max_length=self.tokenizer_max_length,
- truncation=True,
- return_overflowing_tokens=False,
- return_length=False,
- return_tensors="pt",
- )
-
- text_input_ids = text_inputs.input_ids
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
- logger.warning(
- "The following part of your input was truncated because CLIP can only handle sequences up to"
- f" {self.tokenizer_max_length} tokens: {removed_text}"
- )
- prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
-
- # Use pooled output of CLIPTextModel
- prompt_embeds = prompt_embeds.pooler_output
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
-
- # duplicate text embeddings for each generation per prompt, using mps friendly method
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
-
- return prompt_embeds
-
def encode_prompt(
self,
prompt: Union[str, List[str]],
- prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
@@ -343,9 +279,6 @@ def encode_prompt(
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
- prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
- used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
@@ -369,21 +302,11 @@ def encode_prompt(
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
- if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
- scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
- prompt_2 = prompt_2 or prompt
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
- # We only use the pooled prompt output from the CLIPTextModel
- pooled_prompt_embeds = self._get_clip_prompt_embeds(
- prompt=prompt,
- device=device,
- num_images_per_prompt=num_images_per_prompt,
- )
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
@@ -396,15 +319,10 @@ def encode_prompt(
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
- if self.text_encoder_2 is not None:
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
- # Retrieve the original scale by scaling back the LoRA layers
- unscale_lora_layers(self.text_encoder_2, lora_scale)
-
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
- return prompt_embeds, pooled_prompt_embeds, text_ids
+ return prompt_embeds, text_ids
def encode_image(self, image, device, num_images_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
@@ -456,15 +374,12 @@ def prepare_ip_adapter_image_embeds(
def check_inputs(
self,
prompt,
- prompt_2,
height,
width,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
- pooled_prompt_embeds=None,
- negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
@@ -485,39 +400,18 @@ def check_inputs(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
- elif prompt_2 is not None and prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
- " only forward one of the two."
- )
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
- elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
- raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
- elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
- )
-
- if prompt_embeds is not None and pooled_prompt_embeds is None:
- raise ValueError(
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
- )
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
- raise ValueError(
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
- )
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
@@ -649,10 +543,7 @@ def interrupt(self):
def __call__(
self,
prompt: Union[str, List[str]] = None,
- prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Union[str, List[str]] = None,
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
- true_cfg_scale: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
@@ -662,13 +553,11 @@ def __call__(
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -683,18 +572,10 @@ def __call__(
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
- prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
- will be used instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
- negative_prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
- `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
- true_cfg_scale (`float`, *optional*, defaults to 1.0):
- When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
@@ -724,9 +605,6 @@ def __call__(
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
@@ -742,10 +620,6 @@ def __call__(
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
- input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
@@ -769,7 +643,7 @@ def __call__(
Examples:
Returns:
- [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
+ [`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
@@ -780,15 +654,11 @@ def __call__(
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
- prompt_2,
height,
width,
negative_prompt=negative_prompt,
- negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
- pooled_prompt_embeds=pooled_prompt_embeds,
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
@@ -811,34 +681,25 @@ def __call__(
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
- has_neg_prompt = negative_prompt is not None or (
- negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
- )
- do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
+ do_cfg = guidance_scale > 1
(
prompt_embeds,
- pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
- prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
- pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
- if do_true_cfg:
+ if do_cfg:
(
negative_prompt_embeds,
- negative_pooled_prompt_embeds,
negative_text_ids,
) = self.encode_prompt(
prompt=negative_prompt,
- prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
- pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
@@ -933,7 +794,6 @@ def __call__(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
- pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
@@ -941,7 +801,7 @@ def __call__(
return_dict=False,
)[0]
- if do_true_cfg:
+ if do_cfg:
if negative_image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
neg_noise_pred = self.transformer(
From c8cbb31614aa69321ee99f6fe4eadecd0e865d7c Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Tue, 10 Jun 2025 02:22:52 -0600
Subject: [PATCH 010/108] add chroma init
---
src/diffusers/pipelines/chroma/__init__.py | 47 ++++++++++++++++++++++
1 file changed, 47 insertions(+)
create mode 100644 src/diffusers/pipelines/chroma/__init__.py
diff --git a/src/diffusers/pipelines/chroma/__init__.py b/src/diffusers/pipelines/chroma/__init__.py
new file mode 100644
index 000000000000..9faa7902a15c
--- /dev/null
+++ b/src/diffusers/pipelines/chroma/__init__.py
@@ -0,0 +1,47 @@
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ DIFFUSERS_SLOW_IMPORT,
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ get_objects_from_module,
+ is_torch_available,
+ is_transformers_available,
+)
+
+
+_dummy_objects = {}
+_additional_imports = {}
+_import_structure = {"pipeline_output": ["ChromaPipelineOutput"]}
+
+try:
+ if not (is_transformers_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils import dummy_torch_and_transformers_objects # noqa F403
+
+ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
+else:
+ _import_structure["pipeline_chroma"] = ["ChromaPipeline"]
+if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
+ try:
+ if not (is_transformers_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
+ else:
+ from .pipeline_chroma import ChromaPipeline
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(
+ __name__,
+ globals()["__file__"],
+ _import_structure,
+ module_spec=__spec__,
+ )
+
+ for name, value in _dummy_objects.items():
+ setattr(sys.modules[__name__], name, value)
+ for name, value in _additional_imports.items():
+ setattr(sys.modules[__name__], name, value)
From 32659236b22e7e13830726f3a4956bebf306d7db Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Tue, 10 Jun 2025 02:24:23 -0600
Subject: [PATCH 011/108] make chroma output class
---
.../pipelines/chroma/pipeline_output.py | 22 +++++++++++++++++++
1 file changed, 22 insertions(+)
create mode 100644 src/diffusers/pipelines/chroma/pipeline_output.py
diff --git a/src/diffusers/pipelines/chroma/pipeline_output.py b/src/diffusers/pipelines/chroma/pipeline_output.py
new file mode 100644
index 000000000000..bb0a52ceb53c
--- /dev/null
+++ b/src/diffusers/pipelines/chroma/pipeline_output.py
@@ -0,0 +1,22 @@
+from dataclasses import dataclass
+from typing import List, Union
+
+import numpy as np
+import PIL.Image
+import torch
+
+from ...utils import BaseOutput
+
+
+@dataclass
+class ChromaPipelineOutput(BaseOutput):
+ """
+ Output class for Stable Diffusion pipelines.
+
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
From 7400278857cd1bac5af4572d45cdd0af9d0d4534 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:16:44 -0600
Subject: [PATCH 012/108] add chroma transformer to dummy tp
---
src/diffusers/utils/dummy_pt_objects.py | 14 ++++++++++++++
1 file changed, 14 insertions(+)
diff --git a/src/diffusers/utils/dummy_pt_objects.py b/src/diffusers/utils/dummy_pt_objects.py
index 24b3c3d7be59..200e15c7abc0 100644
--- a/src/diffusers/utils/dummy_pt_objects.py
+++ b/src/diffusers/utils/dummy_pt_objects.py
@@ -324,6 +324,20 @@ def from_config(cls, *args, **kwargs):
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
+class ChromaTransformer2DModel(metaclass=DummyObject):
+ _backends = ["torch"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["torch"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["torch"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["torch"])
+
class CogVideoXTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
From c22930d7ccdb5ff90099a4a9e2e34e0784e5410c Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:18:56 -0600
Subject: [PATCH 013/108] add chroma to init
---
src/diffusers/__init__.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py
index ce0777fdef68..f660ab0521aa 100644
--- a/src/diffusers/__init__.py
+++ b/src/diffusers/__init__.py
@@ -159,6 +159,7 @@
"AutoencoderTiny",
"AutoModel",
"CacheMixin",
+ "ChromaTransformer2DModel",
"CogVideoXTransformer3DModel",
"CogView3PlusTransformer2DModel",
"CogView4Transformer2DModel",
From 4e698b1088c5ee5588692028803cba12baf4604b Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:21:10 -0600
Subject: [PATCH 014/108] add chroma to init
---
src/diffusers/__init__.py | 3 +++
1 file changed, 3 insertions(+)
diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py
index f660ab0521aa..2067e7d9d55c 100644
--- a/src/diffusers/__init__.py
+++ b/src/diffusers/__init__.py
@@ -354,6 +354,7 @@
"BlipDiffusionControlNetPipeline",
"BlipDiffusionPipeline",
"CLIPImageProjection",
+ "ChromaPipeline",
"CogVideoXFunControlPipeline",
"CogVideoXImageToVideoPipeline",
"CogVideoXPipeline",
@@ -769,6 +770,7 @@
AutoencoderTiny,
AutoModel,
CacheMixin,
+ ChromaTransformer2DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,
@@ -942,6 +944,7 @@
AudioLDMPipeline,
AuraFlowPipeline,
CLIPImageProjection,
+ ChromaPipeline,
CogVideoXFunControlPipeline,
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
From 5eb4b822aee0e9ebe10e96a29cb81ef641fe9502 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:38:58 -0600
Subject: [PATCH 015/108] fix single file
---
src/diffusers/loaders/single_file_model.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/loaders/single_file_model.py b/src/diffusers/loaders/single_file_model.py
index 82e4db7283cc..e07370130889 100644
--- a/src/diffusers/loaders/single_file_model.py
+++ b/src/diffusers/loaders/single_file_model.py
@@ -101,7 +101,7 @@
"ChromaTransformer2DModel": {
"checkpoint_mapping_fn": convert_chroma_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
- }
+ },
"LTXVideoTransformer3DModel": {
"checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
From f0c75b6b6ffd6619afbb0b0cf625806cbd677766 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:46:51 -0600
Subject: [PATCH 016/108] update
---
src/diffusers/models/__init__.py | 2 ++
1 file changed, 2 insertions(+)
diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py
index 8723fbca2187..db8b5fc7eb7f 100755
--- a/src/diffusers/models/__init__.py
+++ b/src/diffusers/models/__init__.py
@@ -60,6 +60,7 @@
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
_import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"]
+ _import_structure["transformers.chroma_transformer_2d"] = ["ChromaTransformer2DModel"]
_import_structure["transformers.cogvideox_transformer_3d"] = ["CogVideoXTransformer3DModel"]
_import_structure["transformers.consisid_transformer_3d"] = ["ConsisIDTransformer3DModel"]
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
@@ -151,6 +152,7 @@
from .transformers import (
AllegroTransformer3DModel,
AuraFlowTransformer2DModel,
+ ChromaTransformer2DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,
From 6441e70defff84b7855b83ad01010d369626586f Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:48:44 -0600
Subject: [PATCH 017/108] update
---
src/diffusers/models/__init__.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py
index db8b5fc7eb7f..b493d651f4ba 100755
--- a/src/diffusers/models/__init__.py
+++ b/src/diffusers/models/__init__.py
@@ -60,7 +60,6 @@
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
_import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"]
- _import_structure["transformers.chroma_transformer_2d"] = ["ChromaTransformer2DModel"]
_import_structure["transformers.cogvideox_transformer_3d"] = ["CogVideoXTransformer3DModel"]
_import_structure["transformers.consisid_transformer_3d"] = ["ConsisIDTransformer3DModel"]
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
@@ -75,6 +74,7 @@
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
_import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"]
+ _import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
From a6f231c7ce48e0200185056dcc86dca376a24ea3 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:51:45 -0600
Subject: [PATCH 018/108] add chroma to auto pipeline
---
src/diffusers/pipelines/auto_pipeline.py | 2 ++
1 file changed, 2 insertions(+)
diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py
index ed8ad79ca781..29aa321f5ca3 100644
--- a/src/diffusers/pipelines/auto_pipeline.py
+++ b/src/diffusers/pipelines/auto_pipeline.py
@@ -21,6 +21,7 @@
from ..models.controlnets import ControlNetUnionModel
from ..utils import is_sentencepiece_available
from .aura_flow import AuraFlowPipeline
+from .chroma import ChromaPipeline
from .cogview3 import CogView3PlusPipeline
from .cogview4 import CogView4ControlPipeline, CogView4Pipeline
from .controlnet import (
@@ -143,6 +144,7 @@
("flux-controlnet", FluxControlNetPipeline),
("lumina", LuminaPipeline),
("lumina2", Lumina2Pipeline),
+ ("chroma", ChromaPipeline)
("cogview3", CogView3PlusPipeline),
("cogview4", CogView4Pipeline),
("cogview4-control", CogView4ControlPipeline),
From 7445cf422aff613bb6745920795d4b6cdf7d69d6 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:53:06 -0600
Subject: [PATCH 019/108] add chroma to pipeline init
---
src/diffusers/pipelines/__init__.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py
index 268e5c2a8c39..d20d609ff9c4 100644
--- a/src/diffusers/pipelines/__init__.py
+++ b/src/diffusers/pipelines/__init__.py
@@ -148,6 +148,7 @@
"AudioLDM2UNet2DConditionModel",
]
_import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"]
+ _import_structure["chroma"] = ["ChromaPipeline"]
_import_structure["cogvideo"] = [
"CogVideoXPipeline",
"CogVideoXImageToVideoPipeline",
From af918c89dd9fe3c3355ad3a0ad43fa505d3fccfa Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:55:03 -0600
Subject: [PATCH 020/108] change to chroma transformer
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index f6d2e366e48e..7ef191a54de4 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -28,7 +28,7 @@
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
-from ...models import AutoencoderKL, FluxTransformer2DModel
+from ...models import AutoencoderKL, ChromaTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
USE_PEFT_BACKEND,
From 2fcc75a6d89ab010789f20963c1b38b872801afd Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 18:55:56 -0600
Subject: [PATCH 021/108] take out variant from blocks
---
src/diffusers/models/transformers/transformer_chroma.py | 2 --
1 file changed, 2 deletions(-)
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
index 1f726f5cb4b0..7b46ef9c4376 100644
--- a/src/diffusers/models/transformers/transformer_chroma.py
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -290,7 +290,6 @@ def __init__(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
- variant=variant,
)
for _ in range(num_layers)
]
@@ -302,7 +301,6 @@ def __init__(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
- variant=variant,
)
for _ in range(num_single_layers)
]
From 0b027a24533890171b1536f2942bb662ca1466d4 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:04:52 -0600
Subject: [PATCH 022/108] swap embedder location
---
src/diffusers/loaders/single_file_utils.py | 12 ++++++------
1 file changed, 6 insertions(+), 6 deletions(-)
diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py
index aace8fc7bffb..f406ba5ce7e4 100644
--- a/src/diffusers/loaders/single_file_utils.py
+++ b/src/diffusers/loaders/single_file_utils.py
@@ -3333,20 +3333,20 @@ def swap_scale_shift(weight):
return new_weight
# guidance
- converted_state_dict["time_text_embed.embedder.in_proj.bias"] = checkpoint.pop(
+ converted_state_dict["distilled_guidance_layer.in_proj.bias"] = checkpoint.pop(
"distilled_guidance_layer.in_proj.bias"
)
- converted_state_dict["time_text_embed.embedder.in_proj.weight"] = checkpoint.pop(
+ converted_state_dict["distilled_guidance_layer.in_proj.weight"] = checkpoint.pop(
"distilled_guidance_layer.in_proj.weight"
)
- converted_state_dict["time_text_embed.embedder.out_proj.bias"] = checkpoint.pop(
+ converted_state_dict["distilled_guidance_layer.out_proj.bias"] = checkpoint.pop(
"distilled_guidance_layer.out_proj.bias"
)
- converted_state_dict["time_text_embed.embedder.out_proj.weight"] = checkpoint.pop(
+ converted_state_dict["distilled_guidance_layer.out_proj.weight"] = checkpoint.pop(
"distilled_guidance_layer.out_proj.weight"
)
for i in range(num_guidance_layers):
- block_prefix = f"time_text_embed.embedder.layers.{i}."
+ block_prefix = f"distilled_guidance_layer.layers.{i}."
converted_state_dict[f"{block_prefix}linear_1.bias"] = checkpoint.pop(
f"distilled_guidance_layer.layers.{i}.in_layer.bias"
)
@@ -3359,7 +3359,7 @@ def swap_scale_shift(weight):
converted_state_dict[f"{block_prefix}linear_2.weight"] = checkpoint.pop(
f"distilled_guidance_layer.layers.{i}.out_layer.weight"
)
- converted_state_dict[f"time_text_embed.embedder.norms.{i}.weight"] = checkpoint.pop(
+ converted_state_dict[f"distilled_guidance_layer.norms.{i}.weight"] = checkpoint.pop(
f"distilled_guidance_layer.norms.{i}.scale"
)
From 6c0aed14dbaab0fc76c7d90e2ae382c3dab18fe9 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:06:45 -0600
Subject: [PATCH 023/108] remove prompt_2
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 7ef191a54de4..2c5f7988534c 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -308,7 +308,7 @@ def encode_prompt(
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
- prompt=prompt_2,
+ prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
@@ -377,7 +377,6 @@ def check_inputs(
height,
width,
negative_prompt=None,
- negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
From f190c02af71b9dfbfa64bff2921d47b5b76220a0 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:09:37 -0600
Subject: [PATCH 024/108] work on swapping text encoders
---
.../pipelines/chroma/pipeline_chroma.py | 24 +++++--------------
1 file changed, 6 insertions(+), 18 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 2c5f7988534c..88b435fb2917 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -19,8 +19,6 @@
import torch
from transformers import (
CLIPImageProcessor,
- CLIPTextModel,
- CLIPTokenizer,
CLIPVisionModelWithProjection,
T5EncoderModel,
T5TokenizerFast,
@@ -168,7 +166,7 @@ class ChromaPipeline(
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
"""
- model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
+ model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
_optional_components = ["image_encoder", "feature_extractor"]
_callback_tensor_inputs = ["latents", "prompt_embeds"]
@@ -198,9 +196,6 @@ def __init__(
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
- self.tokenizer_max_length = (
- self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
- )
self.default_sample_size = 128
def _get_chroma_attn_mask(self, length: torch.Tensor, max_sequence_length: int) -> torch.Tensor:
@@ -225,9 +220,9 @@ def _get_t5_prompt_embeds(
batch_size = len(prompt)
if isinstance(self, TextualInversionLoaderMixin):
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
- text_inputs = self.tokenizer_2(
+ text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
@@ -237,16 +232,9 @@ def _get_t5_prompt_embeds(
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
- untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
-
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
- removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
- logger.warning(
- "The following part of your input was truncated because `max_sequence_length` is set to "
- f" {max_sequence_length} tokens: {removed_text}"
- )
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
- prompt_embeds = self.text_encoder_2(
+ prompt_embeds = self.text_encoder(
text_input_ids.to(device),
output_hidden_states=False,
attention_mask=(
@@ -254,7 +242,7 @@ def _get_t5_prompt_embeds(
),
)[0]
- dtype = self.text_encoder_2.dtype
+ dtype = self.text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
From 38429ffcaccb49632c4f32804ab75082e78c2bc3 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:11:47 -0600
Subject: [PATCH 025/108] remove mask function
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 13 +++----------
1 file changed, 3 insertions(+), 10 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 88b435fb2917..09883f54c7b1 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -198,13 +198,6 @@ def __init__(
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.default_sample_size = 128
- def _get_chroma_attn_mask(self, length: torch.Tensor, max_sequence_length: int) -> torch.Tensor:
- attention_mask = torch.zeros((length.shape[0], max_sequence_length), dtype=torch.bool, device=length.device)
- for i, n_tokens in enumerate(length):
- n_tokens = torch.max(n_tokens + 1, max_sequence_length)
- attention_mask[i, :n_tokens] = True
- return attention_mask
-
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
@@ -234,12 +227,12 @@ def _get_t5_prompt_embeds(
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+ text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
+
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
output_hidden_states=False,
- attention_mask=(
- self._get_chroma_attn_mask(text_inputs.length, max_sequence_length).to(device)
- ),
+ attention_mask=text_inputs.attention_mask.to(device),
)[0]
dtype = self.text_encoder.dtype
From 7c75d8e98d88816f2a2d76d542b2814ec446f0dc Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:15:18 -0600
Subject: [PATCH 026/108] dont modify mask (for now)
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 09883f54c7b1..1ddce5fb717b 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -227,7 +227,7 @@ def _get_t5_prompt_embeds(
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
- text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
+ #text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
From c9b46af65f4cd51bf5c32cb2795bd5069b1a61a6 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:16:24 -0600
Subject: [PATCH 027/108] wrap attn mask
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 1ddce5fb717b..62f601c0dc9c 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -227,12 +227,12 @@ def _get_t5_prompt_embeds(
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
- #text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
+ text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
output_hidden_states=False,
- attention_mask=text_inputs.attention_mask.to(device),
+ attention_mask=(text_inputs.attention_mask.to(device),),
)[0]
dtype = self.text_encoder.dtype
From 146255aba134360d4d11357d2711a205402528b1 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:17:29 -0600
Subject: [PATCH 028/108] no attn mask (can't get it to work)
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 62f601c0dc9c..04c05372c488 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -227,12 +227,12 @@ def _get_t5_prompt_embeds(
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
- text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
+ #text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
output_hidden_states=False,
- attention_mask=(text_inputs.attention_mask.to(device),),
+ #attention_mask=(text_inputs.attention_mask.to(device),),
)[0]
dtype = self.text_encoder.dtype
From 3309ffef1ce43d4c74ff1beba7da97c1fd4c0a1b Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:33:17 -0600
Subject: [PATCH 029/108] remove pooled prompt embeds
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 1 -
1 file changed, 1 deletion(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 04c05372c488..32135d2c21fe 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -788,7 +788,6 @@ def __call__(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
- pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
From 77b429eda416f0f6645b591b370971913f6bdbf5 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:35:10 -0600
Subject: [PATCH 030/108] change to my own unpooled embeddeer
---
src/diffusers/models/embeddings.py | 32 ++++++++++++++++++++----------
1 file changed, 21 insertions(+), 11 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 8aa2ea5841e9..0ba64eadf2c1 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1636,36 +1636,46 @@ def forward(self, timestep, guidance, pooled_projection):
return conditioning
-
class CombinedTimestepTextProjChromaEmbeddings(nn.Module):
def __init__(self, factor: int, hidden_dim: int, out_dim: int, n_layers: int, embedding_dim: int):
super().__init__()
self.time_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
self.guidance_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
+ self.embedder = ChromaApproximator(
+ in_dim=factor * 4,
+ out_dim=out_dim,
+ hidden_dim=hidden_dim,
+ n_layers=n_layers,
+ )
+ self.embedding_dim = embedding_dim
self.register_buffer(
"mod_proj",
- get_timestep_embedding(torch.arange(out_dim)*1000, 2 * factor, flip_sin_to_cos=True, downscale_freq_shift=0, ),
+ get_timestep_embedding(torch.arange(344), 2 * factor, flip_sin_to_cos=True, downscale_freq_shift=0),
persistent=False,
)
def forward(
- self, timestep: torch.Tensor, guidance: Optional[torch.Tensor], pooled_projections: torch.Tensor
+ self, timestep: torch.Tensor, guidance: Optional[torch.Tensor]
) -> torch.Tensor:
mod_index_length = self.mod_proj.shape[0]
- timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
- guidance_proj = self.guidance_proj(torch.tensor([0])).to(dtype=timestep.dtype, device=timestep.device)
-
- mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
+ timesteps_proj = self.time_proj(timestep)
+ if guidance is not None:
+ guidance_proj = self.guidance_proj(guidance.repeat(timesteps_proj.shape[0]))
+ else:
+ guidance_proj = torch.zeros(
+ (1, self.guidance_proj.num_channels),
+ dtype=timesteps_proj.dtype,
+ device=timesteps_proj.device,
+ )
+ mod_proj = self.mod_proj.unsqueeze(0).repeat(timesteps_proj.shape[0], 1, 1).to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
timestep_guidance = (
- torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
+ torch.cat([timesteps_proj, guidance_proj], dim=1).repeat(1, mod_index_length, 1)
)
- input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
-
+ input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
return input_vec
-
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
super().__init__()
From df7fde7a6d32b03a8ad77d337e6a2125edf4e9c8 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:36:34 -0600
Subject: [PATCH 031/108] fix load
---
src/diffusers/models/embeddings.py | 9 +--------
1 file changed, 1 insertion(+), 8 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 0ba64eadf2c1..8a89a5d1366a 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1642,17 +1642,10 @@ def __init__(self, factor: int, hidden_dim: int, out_dim: int, n_layers: int, em
self.time_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
self.guidance_proj = Timesteps(num_channels=factor, flip_sin_to_cos=True, downscale_freq_shift=0)
- self.embedder = ChromaApproximator(
- in_dim=factor * 4,
- out_dim=out_dim,
- hidden_dim=hidden_dim,
- n_layers=n_layers,
- )
- self.embedding_dim = embedding_dim
self.register_buffer(
"mod_proj",
- get_timestep_embedding(torch.arange(344), 2 * factor, flip_sin_to_cos=True, downscale_freq_shift=0),
+ get_timestep_embedding(torch.arange(out_dim)*1000, 2 * factor, flip_sin_to_cos=True, downscale_freq_shift=0),
persistent=False,
)
From 68f771bf43cc4732ddbb714341242f2ac37ce983 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:38:38 -0600
Subject: [PATCH 032/108] take pooled projections out of transformer
---
src/diffusers/models/transformers/transformer_chroma.py | 8 +-------
1 file changed, 1 insertion(+), 7 deletions(-)
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
index 7b46ef9c4376..72cde1f60b67 100644
--- a/src/diffusers/models/transformers/transformer_chroma.py
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -236,8 +236,6 @@ class ChromaTransformer2DModel(
joint_attention_dim (`int`, defaults to `4096`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
- pooled_projection_dim (`int`, defaults to `768`):
- The number of dimensions to use for the pooled projection.
guidance_embeds (`bool`, defaults to `False`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
@@ -259,7 +257,6 @@ def __init__(
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
- pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
approximator_in_factor: int = 16,
@@ -416,7 +413,6 @@ def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
- pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
@@ -435,8 +431,6 @@ def forward(
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
- pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
- from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
@@ -474,7 +468,7 @@ def forward(
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
- input_vec = self.time_text_embed(timestep, guidance, pooled_projections)
+ input_vec = self.time_text_embed(timestep, guidance)
pooled_temb = self.distilled_guidance_layer(input_vec)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
From f783f38883f6f9c04c6ccb0a5bb630cc76c07e98 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:52:43 -0600
Subject: [PATCH 033/108] ensure correct dtype for chroma embeddings
---
src/diffusers/models/embeddings.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index a31999267506..dc39480b6506 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1665,6 +1665,7 @@ def forward(
torch.cat([timesteps_proj, guidance_proj], dim=1).repeat(1, mod_index_length, 1)
)
input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
+ input_vec.to(dtype=timestep.dtype)
return input_vec
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
From f6de1afc3febd680b41ba4b16d643cb3b897c091 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:54:27 -0600
Subject: [PATCH 034/108] update
---
src/diffusers/models/embeddings.py | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index dc39480b6506..8d3f7cbbe378 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1665,8 +1665,7 @@ def forward(
torch.cat([timesteps_proj, guidance_proj], dim=1).repeat(1, mod_index_length, 1)
)
input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
- input_vec.to(dtype=timestep.dtype)
- return input_vec
+ return input_vec.to(dtype=timestep.dtype)
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
From ab7942174ad9debd5f3a41b1df54c1868e863e75 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:57:31 -0600
Subject: [PATCH 035/108] use dn6 attn mask + fix true_cfg_scale
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 11 ++++++++---
1 file changed, 8 insertions(+), 3 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 32135d2c21fe..de7e5deb201e 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -232,9 +232,14 @@ def _get_t5_prompt_embeds(
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
output_hidden_states=False,
- #attention_mask=(text_inputs.attention_mask.to(device),),
+ attention_mask=text_inputs.attention_mask.to(device),
)[0]
+ max_len = min(text_inputs.attention_mask.sum() + 1, max_sequence_length)
+ prompt_embeds = prompt_embeds[
+ :, :max_len
+ ]
+
dtype = self.text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
@@ -554,7 +559,7 @@ def __call__(
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
not greater than `1`).
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
@@ -794,7 +799,7 @@ def __call__(
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
- noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
+ noise_pred = neg_noise_pred + guidance_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
From 442f77a2d7fc12f67310763b8e157d5751617205 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 19:59:43 -0600
Subject: [PATCH 036/108] use chroma pipeline output
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index de7e5deb201e..7a2fc90841b2 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -609,7 +609,7 @@ def __call__(
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
- Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
+ Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
@@ -842,4 +842,4 @@ def __call__(
if not return_dict:
return (image,)
- return FluxPipelineOutput(images=image)
+ return ChromaPipelineOutput(images=image)
From e69d73099d0572748f0f078d7c97f94ff5fb5a6c Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 20:05:28 -0600
Subject: [PATCH 037/108] use DN6 embeddings
---
src/diffusers/models/embeddings.py | 19 +++++++------------
1 file changed, 7 insertions(+), 12 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 8d3f7cbbe378..adb00b247560 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1651,20 +1651,15 @@ def forward(
self, timestep: torch.Tensor, guidance: Optional[torch.Tensor]
) -> torch.Tensor:
mod_index_length = self.mod_proj.shape[0]
- timesteps_proj = self.time_proj(timestep)
- if guidance is not None:
- guidance_proj = self.guidance_proj(guidance.repeat(timesteps_proj.shape[0]))
- else:
- guidance_proj = torch.zeros(
- (1, self.guidance_proj.num_channels),
- dtype=timesteps_proj.dtype,
- device=timesteps_proj.device,
- )
- mod_proj = self.mod_proj.unsqueeze(0).repeat(timesteps_proj.shape[0], 1, 1).to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
+
+ timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
+ guidance_proj = self.guidance_proj(torch.tensor([0])).to(dtype=timestep.dtype, device=timestep.device)
+
+ mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
timestep_guidance = (
- torch.cat([timesteps_proj, guidance_proj], dim=1).repeat(1, mod_index_length, 1)
+ torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
)
- input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
+ input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
return input_vec.to(dtype=timestep.dtype)
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
From 01bc0dcc56b93d3df77a220920a2df037df15701 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 20:45:45 -0600
Subject: [PATCH 038/108] remove guidance
---
src/diffusers/models/transformers/transformer_chroma.py | 5 +----
1 file changed, 1 insertion(+), 4 deletions(-)
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
index 72cde1f60b67..fd5b01d1ee53 100644
--- a/src/diffusers/models/transformers/transformer_chroma.py
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -416,7 +416,6 @@ def forward(
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
- guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
@@ -465,10 +464,8 @@ def forward(
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
- if guidance is not None:
- guidance = guidance.to(hidden_states.dtype) * 1000
- input_vec = self.time_text_embed(timestep, guidance)
+ input_vec = self.time_text_embed(timestep)
pooled_temb = self.distilled_guidance_layer(input_vec)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
From e31c94866d9c56433184f1ef906218b220f12b10 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 20:46:59 -0600
Subject: [PATCH 039/108] remove guidance embed (pipeline)
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 9 ---------
1 file changed, 9 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index 7a2fc90841b2..e2081405c05e 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -724,13 +724,6 @@ def __call__(
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
- # handle guidance
- if self.transformer.config.guidance_embeds:
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
- guidance = guidance.expand(latents.shape[0])
- else:
- guidance = None
-
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
):
@@ -778,7 +771,6 @@ def __call__(
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
- guidance=guidance,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
@@ -792,7 +784,6 @@ def __call__(
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
- guidance=guidance,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
From 406ab3b1e9696fbcd723658b45a5e2010109ddd5 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 20:47:59 -0600
Subject: [PATCH 040/108] remove guidance from embeddings
---
src/diffusers/models/embeddings.py | 4 +---
1 file changed, 1 insertion(+), 3 deletions(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index adb00b247560..01a8f316be1e 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1647,9 +1647,7 @@ def __init__(self, factor: int, hidden_dim: int, out_dim: int, n_layers: int, em
persistent=False,
)
- def forward(
- self, timestep: torch.Tensor, guidance: Optional[torch.Tensor]
- ) -> torch.Tensor:
+ def forward(self, timestep: torch.Tensor) -> torch.Tensor:
mod_index_length = self.mod_proj.shape[0]
timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
From 1bd8fdfcb6e43622a04e9477afd7cd7cfae4e441 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 20:56:27 -0600
Subject: [PATCH 041/108] don't return length
---
src/diffusers/pipelines/chroma/pipeline_chroma.py | 4 +---
1 file changed, 1 insertion(+), 3 deletions(-)
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index e2081405c05e..e376a402e52b 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -220,14 +220,12 @@ def _get_t5_prompt_embeds(
padding="max_length",
max_length=max_sequence_length,
truncation=True,
- return_length=True,
+ return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
-
- #text_inputs.attention_mask[:, : text_inputs.length + 1] = 1.0
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
From 3e2452ded0ce07306dae684b8b74549bd30ca6dd Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 21:23:35 -0600
Subject: [PATCH 042/108] dont change dtype
---
src/diffusers/models/embeddings.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 01a8f316be1e..0708f93299ab 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1658,7 +1658,7 @@ def forward(self, timestep: torch.Tensor) -> torch.Tensor:
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
)
input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
- return input_vec.to(dtype=timestep.dtype)
+ return input_vec
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
From 1efa772f696c1e2d7026110c17e25306224726b0 Mon Sep 17 00:00:00 2001
From: BuildTools
Date: Wed, 11 Jun 2025 21:46:40 -0600
Subject: [PATCH 043/108] remove unused stuff, fix up docs
---
src/diffusers/models/transformers/transformer_chroma.py | 5 -----
src/diffusers/pipelines/chroma/pipeline_chroma.py | 4 ----
2 files changed, 9 deletions(-)
diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py
index fd5b01d1ee53..65ff7ac14763 100644
--- a/src/diffusers/models/transformers/transformer_chroma.py
+++ b/src/diffusers/models/transformers/transformer_chroma.py
@@ -34,9 +34,7 @@
)
from ..cache_utils import CacheMixin
from ..embeddings import (
- CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjChromaEmbeddings,
- CombinedTimestepTextProjEmbeddings,
ChromaApproximator,
FluxPosEmbed,
)
@@ -236,8 +234,6 @@ class ChromaTransformer2DModel(
joint_attention_dim (`int`, defaults to `4096`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
- guidance_embeds (`bool`, defaults to `False`):
- Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
The dimensions to use for the rotary positional embeddings.
"""
@@ -257,7 +253,6 @@ def __init__(
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
- guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
approximator_in_factor: int = 16,
approximator_hidden_dim: int = 5120,
diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py
index e376a402e52b..d0aabed2a9e1 100644
--- a/src/diffusers/pipelines/chroma/pipeline_chroma.py
+++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py
@@ -225,7 +225,6 @@ def _get_t5_prompt_embeds(
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
@@ -270,9 +269,6 @@ def encode_prompt(
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
From 619921ca22602577b09c69279b939ace00551264 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 21:53:27 -0600
Subject: [PATCH 044/108] add chroma autodoc
---
docs/source/en/api/models/chroma_transformer | 19 +++++++++++++++++++
1 file changed, 19 insertions(+)
create mode 100644 docs/source/en/api/models/chroma_transformer
diff --git a/docs/source/en/api/models/chroma_transformer b/docs/source/en/api/models/chroma_transformer
new file mode 100644
index 000000000000..f8ee50165c64
--- /dev/null
+++ b/docs/source/en/api/models/chroma_transformer
@@ -0,0 +1,19 @@
+
+
+# ChromaTransformer2DModel
+
+A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
+
+## ChromaTransformer2DModel
+
+[[autodoc]] ChromaTransformer2DModel
From f821f2ad5ef544955271ee406d8b0ca8bf9d169e Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 21:54:43 -0600
Subject: [PATCH 045/108] add .md (oops)
---
.../en/api/models/{chroma_transformer => chroma_transformer.md} | 0
1 file changed, 0 insertions(+), 0 deletions(-)
rename docs/source/en/api/models/{chroma_transformer => chroma_transformer.md} (100%)
diff --git a/docs/source/en/api/models/chroma_transformer b/docs/source/en/api/models/chroma_transformer.md
similarity index 100%
rename from docs/source/en/api/models/chroma_transformer
rename to docs/source/en/api/models/chroma_transformer.md
From b0cf6803a74a5f96efd3c83430c40263df0a5f3a Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Wed, 11 Jun 2025 22:07:21 -0600
Subject: [PATCH 046/108] initial chroma docs
---
docs/source/en/api/pipelines/chroma.md | 90 ++++++++++++++++++++++++++
1 file changed, 90 insertions(+)
create mode 100644 docs/source/en/api/pipelines/chroma.md
diff --git a/docs/source/en/api/pipelines/chroma.md b/docs/source/en/api/pipelines/chroma.md
new file mode 100644
index 000000000000..d11bcfabdc99
--- /dev/null
+++ b/docs/source/en/api/pipelines/chroma.md
@@ -0,0 +1,90 @@
+
+
+# Chroma
+
+
+

+

+
+
+Chroma is a text to image generation model based on Flux.
+
+Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
+
+
+
+Chroma can use all the same optimizations as Flux.
+
+
+### Inference
+
+```python
+import torch
+from diffusers import ChromaPipeline
+
+pipe = ChromaPipeline.from_pretrained("chroma-diffusers-repo", torch_dtype=torch.bfloat16)
+pipe.enable_model_cpu_offload()
+
+prompt = "A cat holding a sign that says hello world"
+out = pipe(
+ prompt=prompt,
+ guidance_scale=4.0,
+ height=1024,
+ width=1024,
+ num_inference_steps=26,
+).images[0]
+out.save("image.png")
+```
+
+## Single File Loading for the `ChromaTransformer2DModel`
+
+The `ChromaTransformer2DModel` supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
+
+The following example demonstrates how to run Chroma from a single file.
+
+Then run the following example
+
+```python
+import torch
+from diffusers import ChromaTransformer2DModel, ChromaPipeline
+from transformers import T5EncoderModel
+
+bfl_repo = "black-forest-labs/FLUX.1-dev"
+dtype = torch.bfloat16
+
+transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)
+
+text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
+tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
+
+pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)
+
+pipe.enable_model_cpu_offload()
+
+prompt = "A cat holding a sign that says hello world"
+image = pipe(
+ prompt,
+ guidance_scale=4.0,
+ output_type="pil",
+ num_inference_steps=26,
+ generator=torch.Generator("cpu").manual_seed(0)
+).images[0]
+
+image.save("image.png")
+```
+
+## ChromaPipeline
+
+[[autodoc]] ChromaPipeline
+ - all
+ - __call__
From 0c5eb4470164b30118644d6dbffb427b7fde2c33 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Thu, 12 Jun 2025 00:46:41 -0600
Subject: [PATCH 047/108] undo don't change dtype
---
src/diffusers/models/embeddings.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 0708f93299ab..641944d67f0d 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1658,7 +1658,7 @@ def forward(self, timestep: torch.Tensor) -> torch.Tensor:
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
)
input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
- return input_vec
+ return input_vec.to(timestep.dtype)
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
From 42c0e8ecbebd3717b5cd7978fd2eb1ba30e84561 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Thu, 12 Jun 2025 00:50:36 -0600
Subject: [PATCH 048/108] undo arxiv change
unsure why that happened
---
src/diffusers/models/embeddings.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index 641944d67f0d..1a43994c1116 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -1399,7 +1399,7 @@ class ImagePositionalEmbeddings(nn.Module):
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
- For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
+ For more details, see figure 10 of the dall-e paper: https://huggingface.co/papers/2102.12092
For VQ-diffusion:
From da846d1fff09c4d4e1a1125e5d5b10d655b07469 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Thu, 12 Jun 2025 00:53:40 -0600
Subject: [PATCH 049/108] fix hf papers regression in more places
---
src/diffusers/models/normalization.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/diffusers/models/normalization.py b/src/diffusers/models/normalization.py
index f2b71bb6888e..b07ed2ca893c 100644
--- a/src/diffusers/models/normalization.py
+++ b/src/diffusers/models/normalization.py
@@ -306,7 +306,7 @@ class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
- As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
+ As proposed in PixArt-Alpha (see: https://huggingface.co/papers/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
@@ -623,7 +623,7 @@ def forward(self, input):
class RMSNorm(nn.Module):
r"""
- RMS Norm as introduced in https://arxiv.org/abs/1910.07467 by Zhang et al.
+ RMS Norm as introduced in https://huggingface.co/papers/1910.07467 by Zhang et al.
Args:
dim (`int`): Number of dimensions to use for `weights`. Only effective when `elementwise_affine` is True.
@@ -713,7 +713,7 @@ def forward(self, hidden_states):
class GlobalResponseNorm(nn.Module):
r"""
- Global response normalization as introduced in ConvNeXt-v2 (https://arxiv.org/abs/2301.00808).
+ Global response normalization as introduced in ConvNeXt-v2 (https://huggingface.co/papers/2301.00808).
Args:
dim (`int`): Number of dimensions to use for the `gamma` and `beta`.
From 18327cb57cad4e1e0916fc2c7e50bf41bd7e5ea5 Mon Sep 17 00:00:00 2001
From: Edna <88869424+Ednaordinary@users.noreply.github.com>
Date: Thu, 12 Jun 2025 02:52:39 -0600
Subject: [PATCH 050/108] Update docs/source/en/api/pipelines/chroma.md
Co-authored-by: Dhruv Nair
---
docs/source/en/api/pipelines/chroma.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/docs/source/en/api/pipelines/chroma.md b/docs/source/en/api/pipelines/chroma.md
index d11bcfabdc99..b4d718244fc7 100644
--- a/docs/source/en/api/pipelines/chroma.md
+++ b/docs/source/en/api/pipelines/chroma.md
@@ -1,4 +1,4 @@
-