|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | + |
| 4 | +results = { |
| 5 | + 'results-imagenet.csv' : pd.read_csv('results-imagenet.csv'), |
| 6 | + 'results-imagenetv2-matched-frequency.csv': pd.read_csv('results-imagenetv2-matched-frequency.csv'), |
| 7 | + 'results-sketch.csv' : pd.read_csv('results-sketch.csv'), |
| 8 | + 'results-imagenet-a.csv' : pd.read_csv('results-imagenet-a.csv'), |
| 9 | +} |
| 10 | + |
| 11 | +def diff(csv_file): |
| 12 | + base_models = results['results-imagenet.csv']['model'].values |
| 13 | + csv_models = results[csv_file]['model'].values |
| 14 | + |
| 15 | + rank_diff = np.zeros_like(csv_models, dtype='object') |
| 16 | + top1_diff = np.zeros_like(csv_models, dtype='object') |
| 17 | + top5_diff = np.zeros_like(csv_models, dtype='object') |
| 18 | + |
| 19 | + for rank, model in enumerate(csv_models): |
| 20 | + if model in base_models: |
| 21 | + base_rank = int(np.where(base_models==model)[0]) |
| 22 | + top1_d = results[csv_file]['top1'][rank]-results['results-imagenet.csv']['top1'][base_rank] |
| 23 | + top5_d = results[csv_file]['top5'][rank]-results['results-imagenet.csv']['top5'][base_rank] |
| 24 | + |
| 25 | + # rank_diff |
| 26 | + if rank == base_rank: rank_diff[rank] = f'=' |
| 27 | + elif rank > base_rank: rank_diff[rank] = f'-{rank-base_rank}' |
| 28 | + else: rank_diff[rank] = f'+{base_rank-rank}' |
| 29 | + |
| 30 | + # top1_diff |
| 31 | + if top1_d >= .0: top1_diff[rank] = f'+{top1_d:.3f}' |
| 32 | + else : top1_diff[rank] = f'-{abs(top1_d):.3f}' |
| 33 | + |
| 34 | + # top5_diff |
| 35 | + if top5_d >= .0: top5_diff[rank] = f'+{top5_d:.3f}' |
| 36 | + else : top5_diff[rank] = f'-{abs(top5_d):.3f}' |
| 37 | + |
| 38 | + else: |
| 39 | + rank_diff[rank] = 'X' |
| 40 | + top1_diff[rank] = 'X' |
| 41 | + top5_diff[rank] = 'X' |
| 42 | + |
| 43 | + results[csv_file]['rank_diff'] = rank_diff |
| 44 | + results[csv_file]['top1_diff'] = top1_diff |
| 45 | + results[csv_file]['top5_diff'] = top5_diff |
| 46 | + |
| 47 | + results[csv_file]['param_count'] = results[csv_file]['param_count'].map('{:,.2f}'.format) |
| 48 | + |
| 49 | + results[csv_file].to_csv(csv_file, index=False, float_format='%.3f') |
| 50 | + |
| 51 | +for csv_file in results: |
| 52 | + if csv_file != 'results-imagenet.csv': diff(csv_file) |
0 commit comments