Skip to content

Commit 8f4a33b

Browse files
committed
Add T5Gemma2 doc.
1 parent d5d00bb commit 8f4a33b

File tree

1 file changed

+109
-0
lines changed

1 file changed

+109
-0
lines changed
Lines changed: 109 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,109 @@
1+
2+
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
3+
4+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
5+
the License. You may obtain a copy of the License at
6+
7+
http://www.apache.org/licenses/LICENSE-2.0
8+
9+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
10+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
11+
specific language governing permissions and limitations under the License.
12+
13+
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
14+
rendered properly in your Markdown viewer.
15+
16+
-->
17+
<div style="float: right;">
18+
<div class="flex flex-wrap space-x-1">
19+
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
20+
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
21+
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
22+
</div>
23+
</div>
24+
25+
# T5Gemma 2
26+
27+
T5Gemma 2 is a family of pretrained encoder-decoder large language models with strong multilingual, multimodal and long-context capability, available in 270M-270M, 1B-1B and 4B-4B parameters. Following T5Gemma, it is built via model adaptation (based on Gemma 3) using UL2. The architecture is similar to T5Gemma and Gemma 3, enhanced with tied word embeddings and merged self- and cross-attention to save model parameters.
28+
29+
> [!TIP]
30+
> Click on the T5Gemma 2 models in the right sidebar for more examples of how to apply T5Gemma 2 to different language tasks.
31+
32+
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
33+
34+
<hfoptions id="usage">
35+
<hfoption id="Pipeline">
36+
37+
```python
38+
import torch
39+
from transformers import pipeline
40+
41+
generator = pipeline(
42+
"image-text-to-text",
43+
model="google/t5gemma-2-270m-270m",
44+
dtype=torch.bfloat16,
45+
device_map="auto",
46+
)
47+
48+
generator(
49+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
50+
text="<start_of_image> in this image, there is",
51+
generate_kwargs={"do_sample": False, "max_new_tokens": 50},
52+
)
53+
```
54+
55+
</hfoption>
56+
<hfoption id="AutoModel">
57+
58+
```python
59+
import torch
60+
import requests
61+
from PIL import Image
62+
from transformers import AutoProcessor, AutoModelForSeq2SeqLM
63+
64+
processor = AutoProcessor.from_pretrained("google/t5gemma-2-270m-270m")
65+
model = AutoModelForSeq2SeqLM.from_pretrained(
66+
"google/t5gemma-2-270m-270m",
67+
device_map="auto",
68+
dtype=torch.bfloat16,
69+
)
70+
71+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"
72+
image = Image.open(requests.get(url, stream=True).raw)
73+
prompt = "<start_of_image> in this image, there is"
74+
75+
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
76+
generation = model.generate(**model_inputs, max_new_tokens=20, do_sample=False)
77+
print(processor.decode(generation[0]))
78+
```
79+
80+
</hfoption>
81+
</hfoptions>
82+
83+
## T5Gemma2Config
84+
85+
[[autodoc]] T5Gemma2Config
86+
87+
## T5Gemma2ModuleConfig
88+
89+
[[autodoc]] T5Gemma2ModuleConfig
90+
91+
## T5Gemma2Model
92+
93+
[[autodoc]] T5Gemma2Model
94+
- forward
95+
96+
## T5Gemma2ForConditionalGeneration
97+
98+
[[autodoc]] T5Gemma2ForConditionalGeneration
99+
- forward
100+
101+
## T5Gemma2ForSequenceClassification
102+
103+
[[autodoc]] T5Gemma2ForSequenceClassification
104+
- forward
105+
106+
## T5Gemma2ForTokenClassification
107+
108+
[[autodoc]] T5Gemma2ForTokenClassification
109+
- forward

0 commit comments

Comments
 (0)