-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyMVP.py
1068 lines (841 loc) · 36.9 KB
/
MyMVP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# All post-processing of MVP should be here.
# Plots in ./MVP_plots.py
# Scripts adjusted from Rowan and Jody's work
from operator import itemgetter as get
import numpy as np
import numpy.ma as ma
import scipy.signal as signal
import re
from time import strptime
from scipy.interpolate import interp1d
from scipy.stats import binned_statistic, mode
from scipy.ndimage.measurements import label
import pickle
import matplotlib.pyplot as plt
import seawater.eos80 as sw
from seawater.constants import c3515
from warnings import filterwarnings
from MyMapFunctions import haversines
from MyFunctions import (scalar_projection, angle, central_diff_gradient,
get_contour)
from MySysUtils import preall
from MyInterp import smooth1d_with_holes as smooth
from MyFilters import butter_lowpass_filter as blf
from MyFilters import butter_highpass_filter as bhf
from MyInterp import interp_weights, interpolate
from MyGrids import estimate_cell_edges
from MyNumpyTools import (nan_or_masked, nan_or_masked_to_value, logical_all,
minmax, arange_like, normalize)
from MyOceanography import intermediate_density_profile
from vertmodes import vertModes
# Overview of functions
# concatenate_binned_arrays
# |-loadMVP_m1
# | |- cast_no_to_filename
# | |- header_info
# | |- m1_to_dict
# | |- smooth_p_and_z
# | |- lag_temperature
# | |- calc_density
# | |- calc_N2
# | |- potential_temp
# | |- calc_eps (removed eps references (11 Dec 2017)
# | | |- calc_Lt
# | |- calc_eps_avg
# | |- calc_modes
# | |- bin_fields
# | |- select_downcast
# |-interp_missing_latlon
# |-flatten_to_line
# |-two_layer_treatment
# |-combine_MVP_ADCP
#
# create_timeline (stand-alone function used only once)
def loadMVP_m1(cast_no, z_bins=None, bin_data=True, lagT=True,
mask_nans=False):
"""Load .m1 file and bin data into z_bins if desired
Inputs
------
cast_no : integer
Cast number associated with the .m1 file
z_bins : array
Depth values to bin results into
bin_data : bool
Whether to bin data (influences what the function returns)
lagT : bool
Whether or not to lag temperature (set to False in obtain_phase_lag.py to see how the dt comes about)
mask_nans : bool
Whether to return binned values as masked arrays
Returns
-------
xyt : dict
Time and location information
data : dict
Vectors of length N_raw for each of the parameters in field
binned : dict (returned only if bin_data is True)
As for data, but binned into z_bins with results that are
len(z_bins) - 1
"""
filename = cast_no_to_filename(cast_no)
# Get header information
with open(filename, 'r') as f:
# read in 5000 bytes to ensure all header is read
header = f.read(5000)
h = header_info(header)
# Time and place
xyt = {}
xyt['lat'] = h.coords('lat')
xyt['lon'] = h.coords('lon')
xyt['time'] = h.date_time('time')
xyt['date'] = h.date_time('date')
xyt['cast'] = h.cast_number()
xyt['bottom'] = h.bottom()
# Hydrography
fields = ['p', 'z', 'SV', 'T', 'C', 'S', 'rho', 'ANGL1', 'ANLG2', 'ANLG3']
data = m1_to_dict(filename, fields)
data['p_raw'], data['z_raw'] = data['p'].copy(), data['z'].copy()
data['p'], data['z'] = smooth_p_and_z(*get('p_raw', 'z_raw')(data))
if lagT:
# Having option to not lag temperature is helpful to show working of
# how I got the lag
data['T_unlagged'] = data['T'].copy()
data['S_unlagged'] = data['S'].copy()
data['S'], data['T'] = lag_temperature(*get('C', 'T', 'p')(data))
# Note: I think I have covered my bases to ensure arrays aren't modified
# in place, but I might have missed some. Anyways, I calculate dissipation
# early on, just to be safe, since the functions after that include
# smoothing procedures, which would ruin diss calculation
data['prho'], data['rho'] = calc_density(*get('S', 'T', 'p')(data))
# data['eps'], data['L_T'] = calc_eps(*get('p_raw', 'prho', 'z')(data))
# data['eps_zavg'], data['eps_z_integral'] = calc_eps_avg(
# data['eps'], data['z'], xyt['bottom'])
data['theta'] = potential_temp(*get('S', 'T', 'p')(data))
data['N2'] = calc_N2(*get('p', 'prho', 'z')(data))
if bin_data:
z_bins = np.arange(0, 250) if z_bins is None else z_bins
binned = bin_fields(data, z_bins, mask_nans)
binned['z_bins'] = z_bins
hori, vert, c = calc_modes(binned['N2'], xyt['bottom'], z_bins)
binned['hori_0'], binned['hori_1'], binned['hori_2'] = hori.T
binned['vert_0'], binned['vert_1'], binned['vert_2'] = vert.T
binned['c0'], binned['c1'], binned['c2'] = c
return xyt, data, binned
else:
return xyt, data
def cast_no_to_filename(cast_no):
file_base = '/home/hugke729/PhD/Data/Shipboard/MVP/raw/1503001_'
file_name = file_base + str(cast_no).zfill(4) + '.m1'
return file_name
def concatenate_binned_arrays(
start_n, end_n, z_bins=np.arange(0, 251), flatten_transect=False,
print_cast=False):
"""Join single grids returned by loadMVP_m1 into one overall grid
Inputs
------
start_n, end_n : ints
Cast numbers for start and end of transect
z_bins : 1D array
Edges of bins used for binning data
flatten_transect : bool
Whether to flatten transect to line (set to True for long-sound but
not cross-sound transects)
Returns
-------
grid_all : dict
Various arrays with oceanographic, location, and grid information
"""
# Preallocate the dictionary to hold concatenated grids with NaNs
grid_all = {}
fields = ['p', 'z', 'SV', 'T', 'C', 'S', 'rho', 'prho', 'theta',
'ANGL1', 'ANLG2', 'ANLG3', 'N2',
'hori_0', 'hori_1', 'hori_2', 'vert_0', 'vert_1', 'vert_2']
scalar_fields = ['c0', 'c1', 'c2']
xyt_fields = ['bottom', 'cast', 'date', 'lat', 'lon', 'time']
Nx, Nz = end_n - start_n + 1, len(z_bins) - 1
for field in fields:
grid_all[field] = np.full((Nx, Nz), np.nan)
for field in scalar_fields:
grid_all[field] = np.full(Nx, np.nan)
for field in xyt_fields:
grid_all[field] = []
# For each individual m1 file, load in the data and get a grid by using
# loadMVP_m1, then add it to the overall grid
bad_casts = [] # Keep list of bad casts
for i, cast_no in enumerate(range(start_n, end_n + 1)):
print(cast_no, end=' ') if print_cast else None
# Include try/except to account for profiles that didn't work
try:
xyt_i, _, grid_i = loadMVP_m1(cast_no, z_bins)
for field in fields:
grid_all[field][i, :] = grid_i[field]
for field in scalar_fields:
grid_all[field][i] = grid_i[field]
# Include time and position information
for field in xyt_fields:
grid_all[field] += [xyt_i[field]]
except (ValueError, IndexError):
# Skip this cast. If the try suite didn't work, it's very likely
# the cast had something wrong, such as no downcast data
bad_casts += [i]
print(' Bad cast: ' + str(cast_no), flush=True)
# Remove empty spaces left by bad casts
for field in (fields + scalar_fields):
grid_all[field] = np.delete(grid_all[field], bad_casts, axis=0)
# Fix coordinates for a few files that have missing information
if np.any(np.array(grid_all['lon']) == 0):
grid_all = interp_missing_latlon(grid_all)
# Calculate distances between sites
grid_all['dist'], grid_all['bearing'] = haversines(
grid_all['lon'], grid_all['lat'])
# Ensure that dist increases from west to east for cross-sections
if np.mean(np.diff(grid_all['lon'])) < 0 and not flatten_transect:
grid_all['dist'] = grid_all['dist'].max() - grid_all['dist']
# Mask NaNs
for field in (fields + scalar_fields):
grid_all[field] = ma.masked_invalid(grid_all[field])
if flatten_transect:
# Put all repeat transects in Maury Channel onto a single line
grid_all['dist_flat'] = flatten_to_line(
grid_all['lon'], grid_all['lat'])/1000 # kilometres
# Then, reorder so that distances increase monotonically
dist_order = np.argsort(grid_all['dist_flat'])
for key, value in grid_all.items():
if type(value) is list:
grid_all[key] = [value[i] for i in dist_order]
else:
# If not list, it will be numpy array
grid_all[key] = value[dist_order, ...]
# Make a 2D distance arrays (for pcolor plots) of size n x m and
# n + 1 x m + 1, where n is number of casts and m is number of z bins
grid_all['dist2d_c'] = np.outer(grid_all.get('dist_flat', grid_all['dist']),
np.ones(len(z_bins) - 1))
dist_np1 = estimate_cell_edges(grid_all.get('dist_flat', grid_all['dist']))
grid_all['dist2d_f'] = np.outer(dist_np1, np.ones(len(z_bins)))
# Add in z_bins of size m + 1
# using z_f notation from MITgcm
grid_all['z_f'] = z_bins*1.0
grid_all['z_c'] = (z_bins[1:] + z_bins[:-1])/2
grid_all['z_f2d'] = np.outer(np.ones(dist_np1.size), z_bins)
# Analyse flow in two layers. Do separately for each part of sill,
# which I call sill_1 and sill_2 funnily enough
# Keep all results in a dict within the overall dict
if flatten_transect:
sill_names = 'sill_1', 'sill_2'
x_sills_both = (48, 58), (75, 90)
x_ranges_both = (0, 75), (0, 200)
for sill_name, x_sills, x_ranges in zip(
sill_names, x_sills_both, x_ranges_both):
rho_interface, gprime, z_interface = two_layer_treatment(
grid_all, x_sills, x_ranges)
grid_all[sill_name] = dict()
grid_all[sill_name]['x_sills'] = x_sills
grid_all[sill_name]['x_ranges'] = x_ranges
grid_all[sill_name]['gprime'] = gprime
grid_all[sill_name]['rho_interface'] = rho_interface
grid_all[sill_name]['interface_depth'] = z_interface
return grid_all
def bin_data(data_to_bin, z, z_bins):
"""Bin data into z_bins by taking mean within the bins"""
data_to_bin = ma.masked_invalid(data_to_bin)
binned_data, _, _ = binned_statistic(
z, data_to_bin, bins=z_bins, statistic='mean')
return binned_data
class header_info:
def __init__(self, header):
self.header = header
def coords(self, lat_or_lon):
"""
Pull out coordinates from header
| Coordinates in header file are in the form
| LAT ( ddmm.mmmmmmm,N): 7435.0958200,N
Inputs
------
header: str from open(file).read()
Long string containing header time and location information
lat_or_lon: str
either `'lat'` or `'lon'`
Output
------
Coordinate in decimal minutes
"""
# Search for line starting with LAT or LON and ending with N, E, W, or S
inds = re.search(lat_or_lon + '.*[NEWS]', self.header, re.I).span()
coord_line = self.header[inds[0]:inds[1]]
digit_inds = re.search('[0-9].*' + '\.' + '[0-9]*', coord_line).span()
coord = coord_line[digit_inds[0]:digit_inds[1]]
split = 2
if lat_or_lon is 'lon':
split = 3
coord_dd = float(coord[:split])
coord_dm = float(coord[split:])
coord = coord_dd + coord_dm/60
# Adjust sign
if coord_line[-1] in ['W', 'S']:
coord = -coord
return coord
def date_time(self, time_or_date):
"""
Pull out time and date
| Example of date and time in header:
| ``Time (hh|mm|ss.s): 13:24:57.0``
| ``Date (dd/mm/yyyy): 06/09/2015``
"""
inds = re.search(time_or_date + '.*[0-9]', self.header, re.I).span()
t_or_d_line = self.header[inds[0]:inds[1]]
t_or_d_inds = re.search('[0-9].*[0-9]', t_or_d_line).span()
t_or_d = t_or_d_line[t_or_d_inds[0]:t_or_d_inds[1]]
return t_or_d
def cast_number(self):
"""Pull out cast number"""
inds = re.search('Index.*[0-9]', self.header).span()
index_line = self.header[inds[0]:inds[1]]
index_inds = re.search(4*'[0-9]', index_line).span()
index = int(index_line[index_inds[0]:index_inds[1]])
return index
def bottom(self):
"""Pull out bottom depth"""
inds = re.search('Bottom.*[0-9]', self.header).span()
bottom_line = self.header[inds[0]:inds[1]]
bottom_inds = re.search('[0-9].*', bottom_line).span()
bottom = float(bottom_line[bottom_inds[0]:bottom_inds[1]])
return bottom
def m1_to_dict(filename, fields):
"""Convert .m1 file to python dictionary"""
data = {}
data_array = np.loadtxt(filename, skiprows=49, delimiter=',', unpack=True)
for i, key in enumerate(fields):
data[key] = data_array[i, :]
return data
def select_downcast(pressure, for_overturn_calcs=False):
"""Find indices of the downcast part of data"""
# Take the derivative of the pressure profile
dp = np.diff(pressure)
# Constants for the filter
B, A = signal.butter(2, 0.01, output='ba')
# Filter the pressure derivative, to smooth out the curve
dp_smooth = signal.filtfilt(B, A, dp)
# Make the arrays the same size
dp_smooth = np.append(dp_smooth, [0])
# Find the indices where the descent rate is more than 0.05
falling_inds = dp_smooth > 0.05
if for_overturn_calcs:
# For overturns, we want fall to be smooth.
# Therefore, we want to exclude portions near the surface where
# fall rate may drop below 0.05. In such cases without the code below
# we would end up with discontinuous pieces of the profile
inds_label = label(falling_inds)[0]
inds_label_mode = mode(inds_label[falling_inds])[0]
falling_inds[inds_label != inds_label_mode] = False
falling_inds = np.where(falling_inds)[0]
return falling_inds
def lag_temperature(C, T, p, lag_n=-3.2):
"""Lag temperature by a fixed number of samples"""
# See /home/hugke729/PhD/Python/MVP/obtain_phase_lag.py
# Lag is negative, so it is actually conductivity lagging, but leave
# names as is
samples = np.arange(len(T))
T = np.interp(samples, samples + lag_n, T)
# Recalculate salinity
S = sw.salt(C/c3515, T, p)
return S, T
def calc_density(S, T, p):
args = S, T, p
prho = sw.pden(*args)
rho = sw.dens(*args)
return prho, rho
def calc_N2(p, prho, z):
"""Calculate buoyancy frequency in a 5 step process
1) Sort p. density and monotonically increasing vectors
2) Smooth this vector
3) Get central difference of smooth pden and smoothed z
4) Smooth the derivative
Yip, that's smoothing of a quantity calculated from smoothed quantities
5) Convert to buoyancy frequency
6) Interpolate N2 back onto original z vector
"""
# Don't want to modify in place (otherwise over smooth things)
p = p.copy()
prho = prho.copy()
z = z.copy()
# For most raw quantities, I'm leaving upcast and downcast data unchanged
# However, for N2 I specifically want to work with only downcast data
down_inds = select_downcast(p)
not_down_inds = np.setdiff1d(np.arange(z.size), down_inds)
prho[not_down_inds] = np.nan
z[not_down_inds] = np.nan
# Step 1
prho[down_inds] = np.sort(prho[down_inds])
# Step 2
# Smooth p. density over 12 values based on inspection of smoothed vs raw
# for various smoothing values (equals 2Hz)
smooth_n = 12
prho_smooth = smooth(prho, smooth_n)
# Step 3
# Ignore warning arising from dz == 0 in central_diff_gradient
filterwarnings('ignore', '.*invalid value encountered in true_divide*.')
z_smooth = smooth(z, smooth_n)
dprho_dz = central_diff_gradient(prho_smooth, z_smooth)
# Convert obviously incorrect values arising from MVP not falling to NaN
# A value of dprho_dz greater than 10 is far larger than I expect
bad_inds = np.abs(nan_or_masked_to_value(dprho_dz, 11)) > 10
dprho_dz[bad_inds] = np.nan
# Step 4
dprho_dz = smooth(dprho_dz, smooth_n)
# Step 5
N2 = 9.81*ma.filled(dprho_dz, np.nan)/np.array(prho)
# Step 6
N2 = np.interp(z, z_smooth, N2)
return N2
def potential_temp(S, T, p):
theta = sw.ptmp(S, T, p)
return theta
def smooth_p_and_z(p, z):
"""Smooth the pressure and depth records.
Raw data are jumpy because the resolutions are 0.1 dbar and 0.1m"""
# Smoothing over 25 samples because records at 25 Hz
p = smooth(p, 25)
z = smooth(z, 25)
return p, z
def calc_Lt(prho, z, n_smooth_rho=8, plot_overturns=False, min_drho=5E-4):
"""Calculate Thorpe scale
Inputs are not allowed NaNs
Get N2 estimate for overturn at same time
n_smooth_rho defaults to 8 samples (approx 3 Hz). This is estimated from
coherence analysis of temperature and conductivity. It is a reasonable
comprimise between smoothing overturns and picking up noise
"""
prho_raw = prho.copy()
prho = prho.copy()
z = z.copy()
z_raw = z.copy()
# Doubly ensure z is monotonically increasing and last prho value is max
dz = central_diff_gradient(z)
if np.any(dz < 0):
prho = prho[dz > 0]
z = z[dz > 0]
prho[-1] = np.nanmax(prho) + 1E-6
# Ensure no overturns involve first point (or cumsum wont have zeros)
prho[0] = prho.min() - 0.02
# Smooth prho
prho = smooth(prho, n_smooth_rho)
# Be extra cautious and calculate intermediate profile following
# Gargett and Garner (2008)
prho = intermediate_density_profile(prho, min_drho=min_drho)
# Sort potential density
inds = np.argsort(prho, kind='mergesort')
# Find the displacements needed to sort to density profile
thorpe_disp = z[inds] - z
# Index displacements
inds_disp = inds - np.arange(0, len(inds))
# Overturn bounds where cumulative sum is zero (ignore first)
overturn_inds = np.argwhere(np.cumsum(inds_disp) == 0).squeeze()
overturn_starts = np.setdiff1d(overturn_inds[:-1], overturn_inds - 1)
overturn_ends = np.setdiff1d(overturn_inds[1:], overturn_inds + 1)
# Currenty, overturn_starts includes a stable point above the overturn
# Remove this simply by adding one
overturn_starts += 1
min_dens_range = 1E-3
min_N_samples = 4 # approx 1m in vertical
starts_to_rm = []
ends_to_rm = []
# Plot where overturns start and end
if plot_overturns:
fig, ax = plt.subplots(
ncols=5, sharey=True,
gridspec_kw=dict(width_ratios=(3, 1, 1, 1, 1)))
ax[0].set_ylim(z.max(), 0)
ax[1].set(xlabel='Density range\nin overturn (10$^{-3}$ kg/m3)')
ax[2].set(xlabel='R_o')
ax[3].set(xlabel='log dissipation')
ax[4].plot(thorpe_disp, z)
for start_i, end_i in zip(overturn_starts, overturn_ends):
inds_i = np.s_[start_i:end_i]
inds_ip1 = np.s_[start_i:end_i+1]
inds_wide = np.s_[np.max((0, start_i - 10)):end_i+11]
density_range = np.ptp(prho[inds_i])
# Approximation of Ro given in Gargett and Garner (2008)
# Assumes constant profiling speed (good approx over size
# of overturn)
tdi = thorpe_disp[inds_ip1]
Ro = min([(tdi < 0).sum(), (tdi > 0).sum()])/tdi.size
if plot_overturns:
line, = ax[0].plot(prho[inds_i], z[inds_i], 'r', zorder=5)
col = 'r' if density_range < min_dens_range else 'k'
ax[1].plot(2*(density_range*1E3, ), minmax(z[inds_i]), color=col)
col = 'r' if Ro < 0.2 else 'k'
ax[2].plot(2*(Ro, ), minmax(z[inds_i]), color=col)
ax[4].plot(tdi, z[inds_ip1], 'r')
ax[4].set(xlabel='Thorpe displacement (m)')
# Noise checks
# Ignore overturn if
# its density range is less than 0.001 kg/m3
# if only over distance of 4 samples (~1m)
# badly conditioned (as quantified by Ro)
if density_range < min_dens_range or Ro < 0.2 or len(tdi) <= min_N_samples:
starts_to_rm += [start_i]
ends_to_rm += [end_i]
else:
# If it passes the test, plot enlarged version
if plot_overturns:
norm_prho = normalize(prho[inds_ip1])
enlarged_prho = prho[inds_ip1][-1] + 0.2*norm_prho
ax[0].plot(enlarged_prho + 0.02, z[inds_ip1], 'k')
# T, C, S = [blf(data[key], 3, 25) for key in 'TCS']
# norm_C = normalize(C[inds_wide])
# norm_T = normalize(T[inds_wide])
# norm_S = normalize(S[inds_wide])
# enlarged_C = prho[inds_ip1][-1] + 0.2*norm_C - 0.22
# enlarged_S = prho[inds_ip1][-1] + 0.2*norm_S - 0.22
# enlarged_T = z[inds_ip1][0] + norm_T*np.ptp(z[inds_ip1])
# ax[0].plot(enlarged_C, enlarged_T, 'grey')
# ax[0].plot(enlarged_C[10:-10], enlarged_T[10:-10], 'k')
# ax[0].plot(enlarged_S, enlarged_T, 'r')
# rho_std = np.std(np.diff(prho_raw[inds_ip1]))
# rho_ptp = np.ptp(prho[inds_ip1])
# ratio = rho_ptp/rho_std
# res_str = '{0:.1f}, {1:.1f}, {2:.1f}'
# res_str = res_str.format(1e3*rho_std, 1e3*rho_ptp, ratio)
# xt, yt = prho[inds_ip1].mean() - 0.02, z[inds_ip1].mean()
# ax[0].text(xt, yt, res_str, ha='right')
overturn_starts = np.setdiff1d(overturn_starts, starts_to_rm)
overturn_ends = np.setdiff1d(overturn_ends, ends_to_rm)
if plot_overturns:
ax[0].plot(np.sort(prho), z, 'g')
ax[0].plot(prho_raw, z_raw, 'grey')
ax[0].plot(prho, z, 'k')
ax[0].plot(prho[overturn_starts], z[overturn_starts], 'r_')
ax[0].plot(prho[overturn_ends], z[overturn_ends], 'b_')
thorpe_scales = np.zeros_like(prho)
N2 = np.zeros_like(prho)
for start, end in zip(overturn_starts, overturn_ends):
prho_range = np.ptp(prho[start:end]) # Range over overturn
zrms = np.sqrt(np.sum((thorpe_disp[start:end])**2)/(end-start))
thorpe_scales[start:end] = zrms
dprho_dz = prho_range/np.ptp(z[start:end])
N2_in_overturn = 9.81/np.mean(prho[start:end])*dprho_dz
N2[start:end] = N2_in_overturn
if plot_overturns:
log_eps = np.log10(zrms**2*N2_in_overturn**(3/2))
ax[3].plot(np.ones_like(z[start:end])*log_eps, z[start:end], 'k')
ax[4].plot(thorpe_scales[start:end], z[start:end], 'k')
ax[4].plot(np.zeros(end-start), z[start:end], 'k--')
return thorpe_scales, N2
def calc_eps(p, prho, z, plot_overturns=False, n_smooth_rho=8,
already_downcast=False, min_drho=0.5e-3):
"""Calculate dissipation using Thorpe scale"""
if already_downcast:
# This allows calc_eps to be used for CTD data
down_inds = arange_like(p)
else:
down_inds = select_downcast(p, for_overturn_calcs=True)
finite_inds = np.argwhere(~nan_or_masked(prho)).squeeze()
inds = np.intersect1d(finite_inds, down_inds)
# Preallocate thorpe scale array and associated N2 array
L_T = np.full_like(prho, np.nan)
N2 = np.full_like(prho, np.nan)
# Calc L_T and derive dissipation from parameterisation
L_T[inds], N2[inds] = calc_Lt(
prho[inds], z[inds], plot_overturns=plot_overturns,
n_smooth_rho=n_smooth_rho, min_drho=min_drho)
eps = (0.8*L_T)**2*N2**(3/2)
return eps, L_T
def calc_eps_avg(eps, z, depth):
"""Depth-averaged dissipation rate"""
# Total effective depth for depth average
# ie ignore regions above and below where MVP went
depth_total = np.ptp(z[np.isfinite(z)])
dz = np.insert(np.diff(z), 0, 0)
eps_zavg = np.nansum(eps*dz)/depth_total
eps_z_integral = eps_zavg*depth
return eps_zavg, eps_z_integral
def calc_modes(N2, bottom_depth, z_bins):
"""Wave velocity and structure of first three modes"""
dz = np.mean(np.diff(z_bins))
# Truncate N2 to appropriate length based on depth and dz
Nz = (bottom_depth/dz).astype(int)
N2 = N2[:Nz]
# Find indices of start and end of finite values
finite_vals = nan_or_masked(N2) == 0
labels = label(finite_vals)[0]
main_data = np.where(labels == mode(labels[finite_vals]))[1]
start_ind, end_ind = main_data[0], main_data[-1]
# Fill in NaN values with start or end values
N2[:start_ind] = N2[start_ind]
N2[end_ind + 1:] = N2[end_ind]
# Preallocate arrays for horizontal and vertical structure
hori = np.full((len(z_bins) - 1, 3), np.nan)
vert = hori.copy()
hori[:len(N2), :], vert[:len(N2), :], c, _ = vertModes(N2, dz, 3)
return hori, vert, c[:3]
def bin_fields(D, z_bins, mask_nans=False):
"""Bin data contained in python dictionary"""
grid = {}
fields = D.keys()
down = select_downcast(D['p'])
for key in fields:
# Scalar fields don't need binning
if key in ['eps_zavg', 'eps_z_integral']:
grid[key] = D[key]
else:
# Work around for extra masked values in dissipation
down_inds = down[~(D[key][down].mask)] if key is 'eps' else down
grid[key] = bin_data(
D[key][down_inds], D['z'][down_inds], z_bins)
if mask_nans:
grid[key] = ma.masked_invalid(grid[key])
return grid
def interp_missing_latlon(grid):
"""Three files have missing lat/lon information
Fix by using linear interpolation"""
missing_coords = np.where(np.array(grid['lat']) == 0)[0]
for i in missing_coords:
grid['lat'][i] = (grid['lat'][i-1] + grid['lat'][i+1])/2
grid['lon'][i] = (grid['lon'][i-1] + grid['lon'][i+1])/2
return grid
def create_timeline():
"""Pull out just time and cast number and save for other uses
Saves output to output_file (see below)
"""
# Really inefficient, since I'm loading/reading way more than I need to
# but I'm doing this only once
output_file = '/home/hugke729/PhD/Data/Shipboard/doc/time_cast_lat_lon.txt'
f = open(output_file, 'wt')
# for each file, load data, get time, date (convert to decimal day), lat,
# and lon, then print to file
for cast_no in range(37, 1151):
xyt_i, _ = loadMVP_m1(cast_no, bin_data=False)
ts = strptime(xyt_i['date'] + ' ' + xyt_i['time'], '%m-%d-%Y %H:%M:%S')
dday = ts.tm_yday + (ts.tm_hour + ts.tm_min/60 + ts.tm_sec/(60*60))/24
print(dday, xyt_i['cast'], xyt_i['lat'], xyt_i['lon'], file=f)
print(cast_no, end=' ') # update on progress
f.close()
def flatten_to_line(lons, lats):
"""Convert lons, lats into a single distance coordinate"""
lons, lats = map(np.asanyarray, [lons, lats])
# Create a map so that we can convert lat/lon to x/y
m = pickle.load(open('/home/hugke729/PhD/Maps/penny_strait.pickle', 'rb'))
# Read in data describing transect
lon_line, lat_line = np.genfromtxt(
'/home/hugke729/PhD/Data/Shipboard/doc/repeat_transect_coords.csv',
skip_header=1, delimiter=',', unpack=True)
# Distances along line describing transect
x_line, y_line = m(lon_line, lat_line)
line_dists = np.cumsum(np.hypot(np.diff(x_line), np.diff(y_line)))
line_dists = np.insert(line_dists, 0, 0)
# Repeat x_line, y_line such that their shape is len(x_line), len(lons)
x_line2d = np.outer(x_line, np.ones(lons.shape))
y_line2d = np.outer(y_line, np.ones(lons.shape))
# Calculate distances between every input coordinate and every point along
# the line describing the transect
x_in, y_in = m(lons, lats)
dists = np.hypot(x_in - x_line2d, y_in - y_line2d)
def get_line_inds(x_in, y_in, x_line, y_line, distances):
"""Get the indices of which parts of 'line' to use for scalar
projection"""
# index and coordinates of closest pt
closest = np.argmin(distances)
x_c, y_c = x_line[closest], y_line[closest]
# coordinates of point before and after
x_c_im1, y_c_im1 = x_line[closest - 1], y_line[closest - 1]
x_c_ip1, y_c_ip1 = x_line[closest + 1], y_line[closest + 1]
# angles between (x_in, y_in), (x_c, y_c), and point before or after
# along line
angle_im1 = angle(x_in, y_in, x_c_im1, y_c_im1, x_c, y_c)
angle_ip1 = angle(x_in, y_in, x_c_ip1, y_c_ip1, x_c, y_c)
# index of which other point to go with closest point
# (based on maximising the angle between lines)
second_ind = closest + (1 if angle_ip1 > angle_im1 else -1)
# Edge case for points very near end of transect
if closest == 0 and second_ind == -1:
closest, second_ind = 0, 1
return sorted((closest, second_ind))
# For every input point:
# Find the two closest points along the transect
# Project distance along the line
# Add projection distance to the distance up until the first point
total_dist = np.zeros(len(lons))
for j, (x, y) in enumerate(zip(x_in, y_in)):
i0, i1 = get_line_inds(x, y, x_line, y_line, dists[:, j])
x0, y0 = x_line[i0], y_line[i0]
x1, y1 = x_line[i1], y_line[i1]
dist_from_last_pt = scalar_projection(x0, y0, x1, y1, x, y)
total_dist[j] = dist_from_last_pt + line_dists[i0]
return total_dist
def two_layer_treatment(mvp_dict, x_sills, x_ranges):
"""Estimate g-prime and interface depth
Inputs
------
mvp_dict: dict
Used throughout this file
x_sills: 2-tuple of floats
x position of the start and end of the sill in kilometres
x_ranges: 2-tuple of floats
x position of location where output is applicable
For my transect:
first sill: x_sills = (48, 58), x_ranges = (0, 80)
second sill: x_sills = (75, 90), x_ranges = (65, 200)
Returns
-------
gprime : 1D array
g * delta_rho/rho
interface_depth : 1D array
Depth in metres of "two-layer" interface
"""
# Simplify names of commonly used variables
prho = mvp_dict['prho'].copy()
z_c = mvp_dict['z_c'].copy()
x = mvp_dict['dist_flat']
bottom = np.array(mvp_dict['bottom'])
sill_inds = np.where(np.logical_and(x > x_sills[0], x < x_sills[1]))[0]
# Find interface of mode-1 wave for each profile in sill_inds
rho_interfaces = np.zeros_like(sill_inds, dtype='float')
for i, ind in enumerate(sill_inds):
# Interpolate horizontal mode structure against density
f = interp1d(mvp_dict['hori_0'][ind, :], prho[ind, :])
# Find density of zero crossing of horizontal structure
rho_interfaces[i] = f(0)
rho_interface = np.nanmean(rho_interfaces)
# Find depth of rho_interface along transect
x_in, y_in, z_in = x, z_c, prho
interface_depth = get_contour(x_in, y_in, z_in, rho_interface)
# Preallocate results to keep
gprime = np.full_like(x_in, np.nan)
# Find average density in each layer using linear fit
for i, rho_i in enumerate(mvp_dict['prho']):
top_layer_inds = z_c <= interface_depth[i]
bot_layer_inds = z_c > interface_depth[i]
top_z = z_c[top_layer_inds]
bot_z = z_c[bot_layer_inds]
top_rho = prho[i, :][top_layer_inds]
bot_rho = prho[i, :][bot_layer_inds]
if (~top_rho.mask).sum() < 3 or (~bot_rho.mask).sum() < 3:
# Not enough values to do linear fit
continue
p_top = ma.polyfit(top_z, top_rho, 1)
p_bot = ma.polyfit(bot_z, bot_rho, 1)
top_rho_avg = np.polyval(p_top, interface_depth[i]/2)
bot_rho_avg = np.polyval(p_bot, (bottom[i] + interface_depth[i])/2)
gprime[i] = 9.81*(bot_rho_avg - top_rho_avg)/bot_rho_avg
# Remove output where inappropriate
inappropriate_inds = np.logical_or(x < x_ranges[0], x > x_ranges[1])
gprime[inappropriate_inds] = np.nan
interface_depth[inappropriate_inds] = np.nan
return rho_interface, gprime, interface_depth
def calc_froude_number(along_u, gprime, interface_depth, adcp_z, seafloor):
"""Calculate composite Froude number G"""
G, top_u, bot_u, Fr_top_sq, Fr_bot_sq = preall(
gprime.shape, copies=5, initial_value=np.nan)
for i, u_i in enumerate(along_u.T):
top_layer_inds = adcp_z <= interface_depth[i]
bot_layer_inds = adcp_z > interface_depth[i]
if 0 in [top_layer_inds.sum(), bot_layer_inds.sum()]:
# Insufficient data to calculate Froude number
continue
top_u[i] = ma.mean(u_i[top_layer_inds])
bot_u[i] = ma.mean(u_i[bot_layer_inds])
Fr_top_sq[i] = top_u[i]**2/(gprime[i]*interface_depth[i])
Fr_bot_sq[i] = bot_u[i]**2/(gprime[i]*(seafloor[i] - interface_depth[i]))
G_squared = (Fr_top_sq[i] + Fr_bot_sq[i])
G[i] = np.sqrt(G_squared)
# fig, ax = plt.subplots(nrows=2, sharex=True)
# ax[0].plot(top_u, 'b')
# ax[0].plot(bot_u, 'r')
# ax[1].plot(seafloor)
return G, Fr_top_sq, Fr_bot_sq
def combine_MVP_ADCP(transect_name):
"""Put MVP and ADCP data on the same grid for individual transects
This is useful for quantities that require velocity and density
information such as mass fluxes or Froude numbers
Inputs
------
transect_name: str
One of 'full_long', 'maury_repeat_X'
Returns
-------
Caveats
-------
Not the best near edge points
"""
mvp_processed_dir = '/home/hugke729/PhD/Data/Shipboard/MVP/transects/'
adcp_processed_dir = '/home/hugke729/PhD/Data/Shipboard/ADCP/processed/'
mvp_file = mvp_processed_dir + transect_name + '.p'
adcp_file = adcp_processed_dir + transect_name + '.p'
mvp_dict = pickle.load(open(mvp_file, 'rb'))
adcp_dict = pickle.load(open(adcp_file, 'rb'))
# x coordinate based on where we have MVP data
# I would rather interpolate ADCP data to MVP locations than vice versa
# MVP distances in km
x = mvp_dict['dist_flat']*1000
# z coordinate based on ADCP
z = adcp_dict['dep']
# Grids used for the MVP and ADCP
mvp_X, mvp_Z = np.meshgrid(x, mvp_dict['z_c'])
adcp_X, adcp_Z = np.meshgrid(adcp_dict['dist_s'], z)
# Output grid
X, Z = np.meshgrid(x, z)
# Get vertices and weights for interpolating onto the new grid (X, Z)
# Obviously, these wts and vtx are different for the different datasets
vtx_mvp, wts_mvp = interp_weights((mvp_X, mvp_Z), (X, Z))
vtx_adcp, wts_adcp = interp_weights((adcp_X, adcp_Z), (X, Z))
def interpolate_to_new_grid(values, dataset):
"""Interpolate values on to X, Z with correct weights and vertices"""
# Convert masked values to NaN to avoid any unexpected problems
# values = ma.filled(values, np.nan)
# Transpose values (otherwise interpolation will not work)
values = values.T
# Pick which weights to use
if dataset == 'mvp':