-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyModelSetup.py
694 lines (553 loc) · 21.9 KB
/
MyModelSetup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# Functions that I use when setting up models
from warnings import filterwarnings
import numpy as np
import numpy.ma as ma
import pickle
import matplotlib.pyplot as plt
from matplotlib.path import Path
from mpl_toolkits.basemap import Basemap
from scipy.interpolate import RegularGridInterpolator
from scipy.ndimage import convolve
from scipy.ndimage.filters import gaussian_filter
import xarray as xr
from seawater.eos80 import ptmp
from MyInterp import interp_weights, interpolate, get_springs, inpaint_nans
from MyNumpyTools import change_wrap, fillnan_pad, uneven_2D_convolve, cosd
def setup_map(model_name, regenerate=False):
"""Create Basemap object of fixed dimensions
Inputs
------
model_name : str
string corresponding to the model run's name
regenerate : bool
whether to regenerate map or use pickled version
Returns
-------
m : Basemap object
x0, x1, y0, y1 : tuple
Limits in metres to refine map
Note that I create a map and then zoom in, rather than trying to make
a map with exact dimensions I want. The former is much easier.
"""
map_dir = '/home/hugke729/PhD/Maps/'
if model_name == 'pilot':
fname = map_dir + 'model_pilot.p'
if regenerate:
m = Basemap(
projection='aeqd',
lat_0=76.5,
lon_0=260,
width=3.4e6,
height=2e6,
resolution='i')
pickle.dump(m, open(fname, 'wb'))
else:
m = pickle.load(open(fname, 'rb'))
else:
print('Try different model_name')
x0, x1, y0, y1 = [x*1e3 for x in [750, 3400, 0, 2000]]
return m, (x0, x1, y0, y1)
def ETOPO_interpolator():
"""Create a function to interpolate ETOPO data onto a new grid
Returns
-------
f : function(lon, lat)
A function that takes arguments and returns depths
Positive values are below sea level
"""
bathy_dir = '/home/hugke729/PhD/Data/Bathymetry/'
# Read in binary file of ETOPO data with just bathymetry north of 50N
# File goes W to E, but N to S
# Depths at centre of grid cells
z = np.fromfile(bathy_dir + 'etopo1_bed_c_i2.bin', 'i2')[:40*60*360*60]
z = z.reshape(40*60, 360*60)[::-1, :].T
# Create the corresponding vectors that associated with etopo file
lat_f = np.r_[50:90:2401j]
lon_f = np.r_[-180:180:21601j]
lat_c = (lat_f[:-1] + lat_f[1:])/2
lon_c = (lon_f[:-1] + lon_f[1:])/2
# To ensure interpolation doesn't fail, we need lon_c and lat_c to
# be able to capture values very close to 180W, 180E, and 90N.
# Hence, adjust first and last values as workaround
lon_c[0], lon_c[-1] = -180, 180
lat_c[-1] = 90
return RegularGridInterpolator((lon_c, lat_c), -z)
def get_penny_strait_soundings():
"""Get all bathymetry data from Penny Strait and nearby
Data given to me by Humfrey Melling
Returns
-------
lon, lat, z : 1D arrays
"""
data_dir = '/home/hugke729/PhD/Data/Penny_Strait/'
data_file = data_dir + 'Soundings in GEOTRACES area.csv'
return np.loadtxt(data_file, delimiter=',', unpack=True)
def interpolate_soundings_to_grid(lon_out, lat_out):
"""Interpolate soundings in and near Penny Strait to output grid
Returns
-------
z_ps_out: Nx x Ny masked array
Depths with values only where reasonable interpolation can be made
"""
# Get Penny Strait soundings
ps_lon, ps_lat, ps_z = get_penny_strait_soundings()
# Find parts of the output grid within the bounds of the soundings
ps_lon_inds = np.logical_and(lon_out < ps_lon.max(), lon_out > ps_lon.min())
ps_lat_inds = np.logical_and(lat_out < ps_lat.max(), lat_out > ps_lat.min())
ps_inds = np.logical_and(ps_lon_inds, ps_lat_inds)
ps_LON, ps_LAT = lon_out[ps_inds], lat_out[ps_inds]
# Interpolate sounding data onto output grid
vtx, wts = interp_weights((ps_lon, ps_lat), (ps_LON, ps_LAT))
z_ps_out = np.full_like(lon_out, np.nan)
z_ps_out[ps_inds] = interpolate(
ps_z.flatten(), vtx, wts, fill_value=np.nan)
z_ps_out = ma.masked_invalid(z_ps_out)
return z_ps_out
def interpolate_ETOPO_to_grid(lon_out, lat_out):
"""Get the seafloor depth using ETOPO
Inputs
------
lon_out, lat_out: 2D arrays
Locations of the centres of the grid cells for the output bathymetry
Returns
-------
bathy : 2D array
Interpolated seafloor depth (-ve values are above sea level)
"""
f = ETOPO_interpolator()
return f((lon_out, lat_out))
def combine_etopo_with_soundings(lon_out, lat_out, combine_method='mean'):
"""
Inputs
------
lon_out, lat_out: 2D arrays
Locations of the centres of the grid cells for the output bathymetry
combine_method : str
Either mean or max
Returns
-------
bathy : 2D array
Interpolated seafloor depth
"""
etopo_z = interpolate_ETOPO_to_grid(lon_out, lat_out)
soundings_z = interpolate_soundings_to_grid(lon_out, lat_out)
# Interpolation of soundings doesn't account for land, so the 'depth'
# where the land is funky. Treat this by masking the land based on ETOPO
soundings_z = ma.masked_where(etopo_z < 0, soundings_z)
etopo_z = ma.masked_where(etopo_z < 0, etopo_z)
# Make copies of ETOPO dataset (*1.0 here to ensure different IDs)
max_z = etopo_z*1.0
mean_z = etopo_z*1.0
# For grid points with soundings, calculate mean and max
inds = ~soundings_z.mask
mean_z[inds] = (soundings_z[inds] + etopo_z[inds])/2
max_z[inds] = np.max(np.c_[soundings_z[inds], etopo_z[inds]], axis=1)
if combine_method == 'mean':
return mean_z
elif combine_method == 'max':
return max_z
def interpolate_in_vertical(X, z_in, z_out):
"""Use linear interpolation to convert S and T at fixed depths from
climatology to new depths given by z_out"""
dz = np.diff(z_in)
# Preallocate output
Nx, Ny = X.shape[:2]
X_out = np.zeros((Nx, Ny, len(z_out)))
for i, z in enumerate(z_out):
ind = np.searchsorted(z_in, z) - 1
# searchsorted returns different answer than I want if
# the value to find the index for is exactly equal to the array
# it is being placed. This is a work around for that
if z in z_out:
ind = ind + 1
try:
# Weight for level above (w_a) and below (w_b)
w_a = np.abs(z_in[ind + 1] - z)/dz[ind]
w_b = np.abs(z_in[ind] - z)/dz[ind]
# Sum of weights should equal one, but there could be edge cases
X_out[..., i] = (w_a*X[..., ind] + w_b*X[..., ind + 1])/(w_a + w_b)
except IndexError:
# Deeper than KG climatology
X_out[..., i] = X[..., -1]
return X_out
def project_quarter_degree_climatology(
LON_c, LAT_c, z_out, update_progress=False):
"""
Inputs
------
LON_c, LAT_c : 2D arrays
Locations of the centres of the grid cells for the output hydrography
z_out : 1D array
Depth vector
Returns
-------
S, T : 3D arrays
S and T projected onto output grid
"""
# Preallocate intermediate result
Nx, Ny = LON_c.shape
Nz_qd = 57 # QD climatology has 57 levels
S_xy = np.zeros((Nx, Ny, 57))
T_xy = np.zeros((Nx, Ny, 57))
if update_progress:
print('Projected quarter-degree climatology for level', end=' ')
# Reproject qd climatology to new X-Y grid, but keep original z vector
for i in range(Nz_qd):
S_interpolator = quarter_degree_climatology_interpolator('S', i)
T_interpolator = quarter_degree_climatology_interpolator('T', i)
S_xy[..., i] = S_interpolator((LAT_c, LON_c))
T_xy[..., i] = T_interpolator((LAT_c, LON_c))
if update_progress:
print(i, flush=True, end=', ')
# Reproject to z_out
depth_fname = ('/home/hugke729/PhD/Data/TS_climatology/' +
'Arctic Regional Climatology/nc/depths.txt')
z_in = np.genfromtxt(depth_fname, delimiter=',')
S = interpolate_in_vertical(S_xy, z_in, z_out)
T = interpolate_in_vertical(T_xy, z_in, z_out)
# Convert in situ temperature to potential
T = ptmp(S, T, z_out[np.newaxis, np.newaxis, :])
return S, T
def quarter_degree_climatology_interpolator(T_or_S, z_i):
"""Create a function to interpolate TS data onto a new grid
Inputs
------
T_or_S : str
Either 'T' or 'S'
z : float
Depth (m)
Returns
-------
f : function((lon, lat))
A function that takes arguments and returns temperature or salinity
"""
data_dir = ('/home/hugke729/PhD/Data/TS_climatology/' +
'Arctic Regional Climatology/nc/')
if T_or_S.lower() == 't':
var = 't'
elif T_or_S.lower() == 's':
var = 's'
else:
print('Specify T_or_S correctly')
fname = data_dir + var + '09_04.nc'
D = xr.open_dataset(fname, decode_times=False)
if T_or_S.lower() == 't':
quantity = D.t_an
elif T_or_S.lower() == 's':
quantity = D.s_an
quantity = np.array(quantity[0, z_i, ...])
lon_c, lat_c = np.array(D.lon), np.array(D.lat)
# To ensure interpolation doesn't fail, we need lon_c and lat_c to
# be able to capture values very close to 180W, 180E, and 90N.
# Hence, adjust first and last values as workaround
lon_c[0], lon_c[-1] = -180, 180
lat_c[-1] = 90
return RegularGridInterpolator((lat_c, lon_c), quantity)
def project_kliem_greenberg_climatology(X_c, Y_c, m, z_out):
"""
Inputs
------
X_c, Y_c : 2D arrays
Locations of the centres of the grid cells for the output hydrography
m : basemap object
Basemap associated with X_c and Y_c
z_out : 1D array
Depth vector
Returns
-------
S, T : 3D arrays
S and T projected onto output grid
"""
# Temperature and salinity on original grid
def get_T_S(X):
"""Read in T or S from Kliem and Greenberg fields
X is either 'T' or 'S'"""
out = np.genfromtxt(kg_data_loc + X + '.lst', skip_header=4)
# Rearrange to Nz x Nx with surface at top
out = out.reshape((out.size//Nz_kg, Nz_kg))[:, ::-1]
return out
def project_to_new_xy(vtx, wts, S, T):
# Preallocate outputs interpolated to new xy
S_xy = np.zeros((Nx, Ny, Nz_kg))
T_xy = S_xy.copy()
# Project onto model grid (but keeping KG depths for now)
for i in range(Nz_kg):
S_i = interpolate(S[:, i], vtx, wts, np.nan)
T_i = interpolate(T[:, i], vtx, wts, np.nan)
S_xy[:, :, i] = S_i.reshape(Nx, Ny)
T_xy[:, :, i] = T_i.reshape(Nx, Ny)
return S_xy, T_xy
# Main part of function
phd_dir = '/home/hugke729/PhD/'
kg_data_loc = phd_dir + 'Data/TS_climatology/Kliem_Greenberg/fields/'
Nx, Ny = X_c.shape
Nz_kg = 25 # Number of levels in Kliem Greenberg fields
node_no, lon_kg, lat_kg = np.genfromtxt(kg_data_loc + 'arctic4.nod').T
X_kg, Y_kg = m(lon_kg, lat_kg)
# nodes = np.genfromtxt(kg_data_loc + 'arctic4.ele').T.astype(int)[1::, :] - 1
vtx, wts = interp_weights((X_kg, Y_kg), (X_c, Y_c))
S = get_T_S('S')
T = get_T_S('T')
S_xy, T_xy = project_to_new_xy(vtx, wts, S, T)
# Depths used by Kliem and Greenberg
z_kg = np.genfromtxt(kg_data_loc + 'depths.txt')[::-1]
S_out = interpolate_in_vertical(S_xy, z_kg, z_out)
T_out = interpolate_in_vertical(T_xy, z_kg, z_out)
return S_out, T_out
def combine_qd_and_kg_climatology(X_c, Y_c, m, z_out, ST_kg=None, ST_qd=None,
filter_sigma=10):
"""Combine the two climatologies
Method
------
Calculate an array of weights from 0 to 1 by findings points within the
Kliem and Greenberg mesh. Then smooth around the edges with a Gaussian
Inputs
------
X_c, Y_c : 2D arrays
Locations of the centres of the grid cells for the output hydrography
m : basemap object
Basemap associated with X_c and Y_c
ST_kg : 2-tuple
Two 3D arrays of salinity and temp from Kliem + Greenberg
Vertical grid must be z_out
ST_qd : 2-tuple
Two 3D arrays of salinity and temp from quarter-degree climatology
Vertical grid must be z_out
z_out : 1D array
Depth vector
Returns
-------
S, T : 3D arrays
"""
# Read in the boundary describing the KG mesh
kg_bnd_lon, kg_bnd_lat = np.genfromtxt(
'/home/hugke729/PhD/Data/TS_climatology/Kliem_Greenberg/derived/' +
'approx_inner_boundary.txt', delimiter=',', skip_header=1)
bnd_x, bnd_y = m(kg_bnd_lon, kg_bnd_lat)
# Convert to matplotlib Path object
kg_path = Path(np.c_[bnd_x, bnd_y])
grid_pts = np.c_[X_c.flatten(), Y_c.flatten()]
# Find points inside
inside = kg_path.contains_points(grid_pts).reshape(X_c.shape)
weights = gaussian_filter(inside.astype(float), filter_sigma)
kg_wts, qd_wts = weights[..., np.newaxis], 1 - weights[..., np.newaxis]
# Project each climatology to new grid unless specified as inputs
LON_c, LAT_c = m(X_c, Y_c, inverse=True)
if ST_kg is None:
S_kg, T_kg = project_kliem_greenberg_climatology(X_c, Y_c, m, z_out)
else:
S_kg, T_kg = ST_kg
if ST_qd is None:
S_qd, T_qd = project_quarter_degree_climatology(LON_c, LAT_c, z_out)
else:
S_qd, T_qd = ST_qd
# Ensure arrays are masked
S_kg, T_kg, S_qd, T_qd = map(ma.masked_invalid, [S_kg, T_kg, S_qd, T_qd])
# Weighted average of the two datasets
# Weights are effectively 0 or 1 well away from the boundary path
wts_total = kg_wts*~S_kg.mask + qd_wts*~S_qd.mask
S = (kg_wts*ma.filled(S_kg, 0) + qd_wts*ma.filled(S_qd, 0))/wts_total
T = (kg_wts*ma.filled(T_kg, 0) + qd_wts*ma.filled(T_qd, 0))/wts_total
# Zeros and NaNs are introduced by the previous step, so remove these
# Will leave zeros for temperature just in case
S = ma.masked_equal(ma.masked_invalid(S), 0)
T = ma.masked_invalid(T)
return S, T
def deepen_nares_st(m, X_c, Y_c, depth):
"""Artificially deepen Nares Strait
Then it can act as if it is Fram Strait and allow SSH difference to be
set up
Inputs
------
m : Basemap object
X_c, Y_c : 2D arrays
Location of cell centres
depth : 2D array
Bathymetry to be converted
Returns
-------
new_depth : 2D array
Same as input depth, but with Nares Strait deepened
"""
# Polygon describing new, widened Nares Strait
lons = np.r_[-79.916, -75.896, -65.234, -64.456, -71.386, -75.576, -76.378,
-75.9, -72.876, -70.765, -67.603, -66.75, -66.547, -62.286,
-53.185, -49.028, -48.363, -59.415, -64.639]
lats = np.r_[84.144, 83.861, 82.821, 81.974, 80.079, 79.182, 77.987,
76.732, 75.43, 75.475, 75.067, 75.991, 77.473, 79.089,
80.679, 81.63, 82.559, 84.01, 84.43]
# Convert to map units, then matplotlib Path
xs, ys = m(lons, lats)
p = Path(np.c_[xs, ys])
# Find all grid points within box
inside_inds = p.contains_points(np.c_[X_c.flatten(), Y_c.flatten()])
inside_inds = inside_inds.reshape(X_c.shape)
# Convolve inside_inds with square box to get an array of wts that is
# 1 in the middle of the box, 0 well outside and 0 to 1 near edges
# Using a kernel with specified width
smooth_kernel = 100 # Distance in kilometres
x, y = X_c[:, 0], Y_c[0, :]
x_km, y_km = x.max()/1e3, y.max()/1e3
# Set Nx and Ny for convolution (scale down from number of kms for speed)
# Note that smooth_kernel is dependent on Nx and Ny so scale this
# by the same amount
fac = 10
Nx, Ny, smooth_kernel = [int(a/fac) for a in [x_km, y_km, smooth_kernel]]
# Create 2D kernel
kernel = np.ones((smooth_kernel, smooth_kernel))
wts = uneven_2D_convolve(
inside_inds, x, y, kernel, Nx=Nx, Ny=Ny)/kernel.size
# Calculate new depth by setting 600 m as depth of Nares St and smoothly
# converting back to real bathymetry
to_change = wts > 0.05
new_depth = depth.copy()
new_depth[to_change] = 600*wts[to_change] + (new_depth*(1-wts))[to_change]
return new_depth
def project_tide(X_c, Y_c, m, constituents, return_velocity=False):
"""
Inputs
------
X_c, Y_c : 2D arrays
Locations of the centres of the grid cells for the output hydrography
m : basemap object
Basemap associated with X_c and Y_c
constituent : str or list of strings
Any of S2, 01, N2, M4, K1
return_velocity : bool
Whether to return barotropic velocities
Returns
-------
amp : 2D array or list of 2D arrays
Tidal amplitude for given constituents (metres)
phase : 2D array or list of 2D arrays
Tidal phase in degrees for given constituents
U, V : 2D arrays
Velocities for given constituents
"""
tide_data_dir = '/home/hugke729/Programs/WebTide/data/arctic9/'
# Read in mesh information
node_file = tide_data_dir + 'arctic9.nod'
node_no, lon_tide, lat_tide = np.genfromtxt(node_file, unpack=True)
node_no = node_no.astype('int')
X_tide, Y_tide = m(lon_tide, lat_tide)
# Calculate vertices and weights to project to model grid
vtx, wts = interp_weights((X_tide, Y_tide), (X_c, Y_c))
# Create blank list to append results to
amp = []
phase = []
u, u_phase = [], []
v, v_phase = [], []
# Ensure constituents is a list
if type(constituents) is str:
constituents = [constituents]
# Read in information for given tide
for const in constituents:
constituent_file = tide_data_dir + const.upper() + '.barotropic.s2c'
amp_node, phase_node = np.genfromtxt(
constituent_file, skip_header=3, usecols=[1, 2], unpack=True)
if return_velocity:
vel_file = constituent_file.replace('s2c', 'v2c')
no, u_a, u_p, v_a, v_p = np.genfromtxt(
vel_file, skip_header=3, unpack=True)
def tmp_interpolate(X):
return interpolate(X, vtx, wts, np.nan).reshape(X_c.shape)
def interpolate_phase(X):
"""
Do phase interp multiple times with different wrapping points.
Then convert back to original wrapping.
Then take median
"""
filterwarnings('ignore', 'All-NaN slice*.')
wraps = np.r_[0:360:7j][1:]
phases = np.zeros((X_c.shape[0], X_c.shape[1], len(wraps)))
for i, wrap_out in enumerate(wraps):
phase_nodes = change_wrap(X, 180, wrap_out)
phases_i = tmp_interpolate(phase_nodes)
phases[..., i] = change_wrap(phases_i, wrap_out, 180)
return np.nanmedian(phases, axis=-1)
if return_velocity:
u += [tmp_interpolate(u_a)]
u_phase += [interpolate_phase(u_p)]
v += [tmp_interpolate(v_a)]
v_phase += [interpolate_phase(v_p)]
# Project to model grid
amp += [tmp_interpolate(amp_node)]
# Add current constituent to list
phase += [interpolate_phase(phase_node)]
# Sum up velocities to get U0 and V0
U0, V0 = np.zeros_like(X_c), np.zeros_like(X_c)
for u_i, u_i_phase, v_i, v_i_phase in zip(u, u_phase, v, v_phase):
# Using cos here as that is what's used in SSHR package
U0 += u_i*cosd(u_i_phase)
V0 += v_i*cosd(v_i_phase)
# Convert list to array if appropriate
if len(amp) == 1:
amp, phase = amp[0], phase[0]
if return_velocity:
return amp, phase, U0, V0
else:
return amp, phase
def project_and_extrapolate_tide(
X_c, Y_c, m, constituents, leave_mask=None, update_progress=1,
return_velocity=False):
"""
Project tidal amplitude and phases for given constituents onto new grid
Then extrapolate empty region using inpaint_nans
Inputs
------
X_c, Y_c : 2D arrays
Locations of the centres of the grid cells for the output hydrography
m : basemap object
Basemap associated with X_c and Y_c
constituents : str or list of strings
Any of S2, 01, N2, M4, K1
leave_mask : 2D boolean array
Argument passed to inpaint_nans
update_progress : (0, 1, or 2)
Level of updates printed
0 = no updates
1 = update after each constituent
2 = update all steps of inpaint_nans
return_velocity : bool
Whether to return velocities corresponding to time 0
Returns
-------
amp : 2D array or list of 2D arrays
Tidal amplitude for given constituent (metres)
phase : 2D array or list of 2D arrays
Tidal phase in degrees for given constituent
U0, V0 : 2D arrays
Barotropic tidal current velocities
"""
A, P, U0, V0 = project_tide(X_c, Y_c, m, constituents,
return_velocity=True)
# Ensure A and P are within a list even if only one constituent
if type(A) is not list:
one_constituent = True
A, P = [[X] for X in [A, P]]
else:
one_constituent = False
springs = get_springs(A[0], leave_mask)
inpaint_opts = dict(
springs=springs, update_progress=update_progress,
leave_mask=leave_mask)
if update_progress == 1:
# If 0, it is already False. If it is 1, we don't want inpaint_nans
# to update the progress
inpaint_opts['update_progress'] = False
for i, (A_i, P_i) in enumerate(zip(A, P)):
C = constituents if one_constituent else constituents[i]
if update_progress >= 1:
print('Calculating ' + C + ' tide', flush=True)
A[i] = inpaint_nans(A_i, (X_c, Y_c), **inpaint_opts)
P[i] = inpaint_nans(P_i, (X_c, Y_c), **inpaint_opts)
if return_velocity:
U0 = inpaint_nans(U0, (X_c, Y_c), **inpaint_opts)
V0 = inpaint_nans(V0, (X_c, Y_c), **inpaint_opts)
# Return A and P to array if only one constituent given
if len(A) == 1:
A, P = A[0], P[0]
if return_velocity:
return A, P, U0, V0
else:
return A, P