-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathx86_sim.cpp
550 lines (437 loc) · 13.6 KB
/
x86_sim.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#include <cstdio>
#include <sstream>
#include <map>
#include "x86_sim.h"
#include "x86_dbg.h"
#include "x86_lexer.h"
#include "x86_tree.h"
#include "mempool.h"
#include "util.h"
using namespace std;
const char *xreg[] = { "eax", "ebx", "ecx", "edx", "esi", "edi", "esp", "ebp", "eflags",
"ax", "bx", "cx", "dx",
"al", "ah", "bl", "bh", "cl", "ch", "dl", "dh"
};
extern MemPool *xpool;
/* Parser related functions */
void *ParseAlloc(void *(*mallocProc)(size_t));
void ParseFree(void *p, void (*freeProc)(void*));
void Parse(void *yyp, int yymajor, TokenInfo *yyminor, XParserContext *ctx);
//XReference methods
bool XReference::deref(uint32_t &value)
{
switch (type) {
case RT_Reg: return sim->getRegValue(address, value);
case RT_Mem: return sim->readMem(address, value, bitSize);
case RT_PMem: {
value = (uint32_t)sim->getMemPtr(address);
return value != 0;
}
case RT_Const: value = address; break;
default:
return false;
}
return true;
}
bool XReference::assign(uint32_t value)
{
switch (type) {
case RT_Reg:
return sim->setRegValue(address, value);
case RT_Mem:
return sim->writeMem(address, value, bitSize);
default:
return false;
}
}
//X86Sim methods
X86Sim::X86Sim()
{
gpr[R_ESP] = X_VIRTUAL_STACK_END_ADDR;
stackStartAddress = X_VIRTUAL_STACK_END_ADDR - (X_STACK_SIZE_WORDS * 4);
runtimeCtx = NULL;
jumpTbl = NULL;
dbg = NULL;
}
AsmDebugger *X86Sim::getDebugger()
{
return dbg;
}
bool X86Sim::getRegValue(int regId, uint32_t &value)
{
if ((regId >= R_EAX) && (regId <= R_EFLAGS)) {
value = gpr[regId];
return true;
} else if ((regId >= R_AX) && (regId <= R_DX)) {
switch (regId) {
case R_AX: value = (gpr[R_EAX] & 0x0000FFFF); break;
case R_BX: value = (gpr[R_EBX] & 0x0000FFFF); break;
case R_CX: value = (gpr[R_ECX] & 0x0000FFFF); break;
case R_DX: value = (gpr[R_EDX] & 0x0000FFFF); break;
default:
return false;
}
return true;
} else {
switch (regId) {
case R_AL: value = (gpr[R_EAX] & 0x000000FF); break;
case R_AH: value = ((gpr[R_EAX] & 0x0000FF00) >> 8); break;
case R_BL: value = (gpr[R_EBX] & 0x000000FF); break;
case R_BH: value = ((gpr[R_EBX] & 0x0000FF00) >> 8); break;
case R_CL: value = (gpr[R_ECX] & 0x000000FF); break;
case R_CH: value = ((gpr[R_ECX] & 0x0000FF00) >> 8); break;
case R_DL: value = (gpr[R_EDX] & 0x000000FF); break;
case R_DH: value = ((gpr[R_EDX] & 0x0000FF00) >> 8); break;
default:
return false;
}
return true;
}
return false;
}
bool X86Sim::setRegValue(int regId, uint32_t value)
{
if ((regId >= R_EAX) && (regId <= R_EFLAGS)) {
gpr[regId] = value;
}
else if ((regId >= R_AX) && (regId <= R_DX)) {
value &= 0xFFFF;
switch (regId) {
case R_AX: gpr[R_EAX] = (gpr[R_EAX] & 0xFFFF0000) | value; break;
case R_BX: gpr[R_EBX] = (gpr[R_EBX] & 0xFFFF0000) | value; break;
case R_CX: gpr[R_ECX] = (gpr[R_ECX] & 0xFFFF0000) | value; break;
case R_DX: gpr[R_EDX] = (gpr[R_EDX] & 0xFFFF0000) | value; break;
default:
return false;
}
}
else {
value &= 0xFF;
switch (regId) {
case R_AL: gpr[R_EAX] = (gpr[R_EAX] & 0xFFFFFF00) | (value); break;
case R_AH: gpr[R_EAX] = (gpr[R_EAX] & 0xFFFF00FF) | (value<<8); break;
case R_BL: gpr[R_EBX] = (gpr[R_EBX] & 0xFFFFFF00) | (value); break;
case R_BH: gpr[R_EBX] = (gpr[R_EBX] & 0xFFFF00FF) | (value<<8); break;
case R_CL: gpr[R_ECX] = (gpr[R_ECX] & 0xFFFFFF00) | (value); break;
case R_CH: gpr[R_ECX] = (gpr[R_ECX] & 0xFFFF00FF) | (value<<8); break;
case R_DL: gpr[R_EDX] = (gpr[R_EDX] & 0xFFFFFF00) | (value); break;
case R_DH: gpr[R_EDX] = (gpr[R_EDX] & 0xFFFF00FF) | (value<<8); break;
default:
return false;
}
}
return true;
}
bool X86Sim::readMem(uint32_t vaddr, uint32_t &result, XBitSize bitSize)
{
uint8_t *pmem = getMemPtr(vaddr);
if (pmem == NULL)
return false;
switch (bitSize) {
case BS_8: {
result = (uint32_t)(*pmem);
break;
}
case BS_16: {
result = (uint32_t)(*((uint16_t *)pmem));
break;
}
case BS_32: {
result = *((uint32_t *)pmem);
break;
}
default:
return false;
}
return true;
}
bool X86Sim::writeMem(uint32_t vaddr, uint32_t value, XBitSize bitSize)
{
uint8_t *pmem = getMemPtr(vaddr);
if (pmem == NULL)
return false;
switch (bitSize) {
case BS_8: {
*pmem = (uint8_t)(value & 0xFF);
break;
}
case BS_16: {
*((uint16_t *)pmem) = value & 0xFFFF;
break;
}
case BS_32: {
*((uint32_t *)pmem) = value;
break;
}
default:
return false;
}
return true;
}
bool translateVirtualToPhysical(uint32_t vaddr, uint32_t &paddr);
bool X86Sim::parseFile(istream *in, XParserContext &ctx)
{
X86Lexer lexer(in);
TokenInfo *tokenInfo;
int token;
void* pParser = ParseAlloc (malloc);
tk_pool = &(ctx.tokenPool);
while ((token = lexer.getNextToken()) == XTK_EOL);
while (token != XTK_EOF) {
if (token == XTK_EOL) {
tokenInfo = new TokenInfo;
lexer.getTokenInfo(tokenInfo);
tokenInfo->line--; //For better error reporting when finding unexpected new lines
while ((token = lexer.getNextToken()) == XTK_EOL);
if (token == XTK_EOF) break;
Parse(pParser, XTK_EOL, tokenInfo, &ctx);
tokenInfo = new TokenInfo;
lexer.getTokenInfo(tokenInfo);
Parse(pParser, token, tokenInfo, &ctx);
} else {
tokenInfo = new TokenInfo;
lexer.getTokenInfo(tokenInfo);
Parse(pParser, token, tokenInfo, &ctx);
}
token = lexer.getNextToken();
}
tokenInfo = new TokenInfo;
lexer.getTokenInfo(tokenInfo);
Parse(pParser, XTK_EOF, tokenInfo, &ctx);
Parse(pParser, 0, tokenInfo, &ctx);
ParseFree(pParser, free);
tk_pool->freeAll();
return (ctx.error == 0);
}
bool X86Sim::resolveLabels(list<XInstruction *> &linst, vector<XInstruction *> &vinst, map<string, uint32_t> &lbl_map)
{
list<XInstruction *>::iterator it = linst.begin();
int index = 0;
while (it != linst.end()) {
XInstruction *inst = *it;
if (inst->isA(XINST_Tagged)) {
XInstTagged *itagged = (XInstTagged *)inst;
lbl_map[itagged->tag] = index;
inst = itagged->inst;
if (inst != NULL)
inst->line = itagged->line;
}
if (inst != NULL) {
vinst.push_back(inst);
index++;
}
it++;
}
return true;
}
bool X86Sim::exec(istream *in)
{
if (dbg != NULL) {
reportRuntimeError("The simulator is in debug mode.\n");
return false;
}
XRtContext rt_ctx, *old_rt_ctx;
XParserContext parser_ctx;
old_rt_ctx = runtimeCtx;
xpool = &(parser_ctx.parserPool);
runtimeCtx = NULL;
if (!parseFile(in, parser_ctx)) {
runtimeCtx = old_rt_ctx;
return false;
}
vector<XInstruction *> vinst;
map<string, uint32_t> lbl_map, *old_label_map;
runtimeCtx = &rt_ctx;
if (!resolveLabels(parser_ctx.instList, vinst, lbl_map)) {
runtimeCtx = old_rt_ctx;
return false;
}
bool result = true;
int count = vinst.size();
old_label_map = jumpTbl;
jumpTbl = &lbl_map;
rt_ctx.ip = 0;
rt_ctx.stop = false;
lastResult.type = RT_None;
while ((rt_ctx.ip < count) && !rt_ctx.stop) {
XInstruction *inst = vinst[rt_ctx.ip];
rt_ctx.line = inst->line;
rt_ctx.ip ++;
if (!inst->exec(this, lastResult)) {
result = false;
break;
}
}
runtimeCtx = old_rt_ctx;
jumpTbl = old_label_map;
return result;
}
bool X86Sim::debug(string asm_file)
{
if (dbg != NULL) {
reportRuntimeError("The simulator is in debug mode already.\n");
return false;
}
ifstream in;
in.open(asm_file.c_str(), ifstream::in|ifstream::binary);
if (!in.is_open()) {
reportRuntimeError("Cannot open file '%s'\n", asm_file.c_str());
return false;
}
vector<XInstruction *> instList;
jumpTbl = new map<string, uint32_t>;
xpool = new MemPool();
if (!loadFile(&in, instList, *jumpTbl)) {
delete jumpTbl;
delete xpool;
return false;
}
vector<string> sourceLines;
in.clear();
in.seekg(0);
if (in.fail()) {
cout << "Oops. Fail." << endl;
dbg->stop();
return false;
}
while (!in.eof()) {
string line;
getline(in, line);
sourceLines.push_back(line);
};
runtimeCtx = new XRtContext;
dbg = new X86Debugger(this, instList, xpool);
dbg->setSourceLines(sourceLines);
in.close();
return true;
}
bool X86Sim::loadFile(istream *in, vector<XInstruction *> &instList, map<string, uint32_t> &labelMap)
{
XParserContext parser_ctx;
if (!parseFile(in, parser_ctx)) {
return false;
}
if (!resolveLabels(parser_ctx.instList, instList, labelMap)) {
return false;
}
return true;
}
void X86Sim::updateFlags(uint8_t op, uint8_t sign1, uint8_t sign2, uint32_t arg1, uint32_t arg2, uint32_t result, XBitSize bitSize)
{
uint32_t eflags = 0;
//Update carry flag (overflow for unsigned add, borrow for sub)
switch (op) {
case XFN_ADD: {
if ((result < arg1) || (result < arg2))
eflags |= CF_MASK;
break;
}
case XFN_CMP:
case XFN_SUB: {
if (result > arg1)
eflags |= CF_MASK;
break;
}
}
//Update parity flag
if ( hasEvenParity((uint8_t)(result & 0xFF)) )
eflags |= PF_MASK;
//Update zero flag
if (result == 0)
eflags |= ZF_MASK;
if (XFN_IS_ARITH(op)) {
//Update sign flag
if (SIGN_BIT(result, bitSize) != 0)
eflags |= SF_MASK;
//Update overflow flag
//if (ARITH_OVFL(result, arg1, arg2, bitSize))
unsigned char result_sign = SIGN_BIT (result, bitSize) != 0;
if ( (sign1 == sign2) && (sign1 != result_sign) )
eflags |= OF_MASK;
}
gpr[R_EFLAGS] = eflags;
}
bool X86Sim::doOperation(unsigned char op, XReference &ref1, uint32_t value2)
{
uint32_t value1;
if (!ref1.deref(value1))
return false;
uint32_t result = value1;
uint8_t sign1, sign2;
sign1 = SIGN_BIT(value1, ref1.bitSize) != 0;
sign2 = SIGN_BIT(value2, ref1.bitSize) != 0;
switch (op) {
case XFN_TEST:
case XFN_AND: result &= value2; break;
case XFN_OR: result |= value2; break;
case XFN_XOR: result ^= value2; break;
case XFN_NOT: result = ~value1; break;
case XFN_NEG: {
op = XFN_SUB;
value2 = -value1;
value1 = 0;
result = value2;
break;
}
case XFN_ADD: result += value2; break;
case XFN_CMP:
case XFN_SUB: {
result -= value2;
if (value2 != 0)
sign2 = !sign2;
break;
}
case XFN_IMUL: {
result = ((int32_t)result) * ((int32_t)value2);
break;
}
case XFN_IDIV: {
result = ((int32_t)result) / ((int32_t)value2);
break;
}
case XFN_SHL: {
result <<= value2 % 32;
break;
}
case XFN_SHR: {
result >>= value2 % 32;
break;
}
default:
return false;
}
uint32_t mask = MASK_FOR(ref1.bitSize);
result &= mask;
updateFlags(op, sign1, sign2, value1, value2, result, ref1.bitSize);
if ((op != XFN_CMP) && (op != XFN_TEST)) {
ref1.assign(result);
}
return true;
}
bool X86Sim::translateVirtualToPhysical(uint32_t vaddr, uint32_t &paddr)
{
if (vaddr >= X_VIRTUAL_GLOBAL_START_ADDR && vaddr <= X_VIRTUAL_GLOBAL_END_ADDR) {
paddr = vaddr - X_VIRTUAL_GLOBAL_START_ADDR;
} else if (vaddr >= stackStartAddress && vaddr < X_VIRTUAL_STACK_END_ADDR) {
paddr = (vaddr - stackStartAddress) + (X_GLOBAL_MEM_WORD_COUNT * 4);
} else {
reportRuntimeError("Runtime exception: fetch address out of limit 0x%x\n", vaddr);
return false;
}
return true;
}
uint8_t *X86Sim::getMemPtr(uint32_t vaddr)
{
uint32_t offset;
if (!translateVirtualToPhysical(vaddr, offset)) {
return NULL;
}
return (uint8_t *)(((uint8_t *)mem) + offset);
}
bool X86Sim::hasEvenParity(uint8_t value)
{
value ^= value >> 4;
value ^= value >> 2;
value ^= value >> 1;
return (~value) & 1;
}