Skip to content

Commit 1e5a24c

Browse files
authored
Merge pull request #144 from imdeepmind/docs/fixed-141
Docs/fixed 141
2 parents ed29aae + 72596a5 commit 1e5a24c

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

docs/docs/models/model.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ from neuralpy.models import Model
8585
...
8686

8787
# Training the model
88-
model.fit(train_data, test_data, epochs=10, batch_size=32)
88+
model.fit(train_data, validation_data, epochs=10, batch_size=32)
8989
```
9090

9191
#### `.predict()` Method

docs/get-started.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ model.compile(optimizer=Adam(), loss_function=MSELoss())
8585
To train, we have the fit method. We need to pass the training and validation data, along with some other parameters to the fit method.
8686

8787
```python
88-
model.fit(train_data=(X_train, y_train), test_data=(X_validation, y_validation), epochs=300, batch_size=4)
88+
model.fit(train_data=(X_train, y_train), validation_data=(X_validation, y_validation), epochs=10, batch_size=4)
8989
```
9090

9191
## Predicting Results
@@ -94,7 +94,7 @@ The main purpose of the model is to predict results. In NeuralPy models, there a
9494

9595
```python
9696
# Predicting
97-
preds = model.predict(X=X_test, batch_size=4)
97+
preds = model.predict(predict_data=X_test, batch_size=4)
9898
```
9999

100100
## Evaluating the models
@@ -103,5 +103,5 @@ After training, one important step is to evaluate the model on the test dataset.
103103

104104
```python
105105
# Evaluating
106-
ev = model.evaluate(X=X_test, y=y_test, batch_size=4)
106+
ev = model.evaluate(test_data=(X_test, y_test), batch_size=4)
107107
```

0 commit comments

Comments
 (0)