|
| 1 | +function GenerateSaturnIBLVDCLaunchAzimuthPolynomial |
| 2 | + |
| 3 | + %Generate the constants for the Saturn IB LVDC launch azimuth polynomial |
| 4 | + %The polynomial has the form: A_Z = A00 + A01*INCL + A10*NODE + A11*INCL*NODE |
| 5 | + |
| 6 | + %INPUTS |
| 7 | + LAT = 28.627151; %Launchpad latitude |
| 8 | + INCL = 51.78; %Desired orbit inclination |
| 9 | + ASC = 1; %1 = ascending node launch, 0 = descending node launch |
| 10 | + V_ORBIT = 7835; %Velocity at orbital insertion |
| 11 | + |
| 12 | + |
| 13 | + %CONSTANTS |
| 14 | + RAD = pi/180; |
| 15 | + DEG = 180/pi; |
| 16 | + LW_LIMIT = 3*60; %Increment in time to generate the launch azimuth array, seconds |
| 17 | + D_INCL = 1.0; %Increment in inclination to generate the launch azimuth array, degrees |
| 18 | + R_EARTH = 6.373338e6; %Radius of Earth |
| 19 | + EARTH_RATE = 7.29211514667e-5; %Rotational rate of Earth |
| 20 | + DR = 3.1e-1; %Downrange angle for ascent, value is 17.762 degrees |
| 21 | + DTOPT = 6.0*60.0 + 33; |
| 22 | + |
| 23 | + %INTERNAL |
| 24 | + |
| 25 | + %Convert to internal unit |
| 26 | + LAT = LAT*RAD; |
| 27 | + INCL = INCL*RAD; |
| 28 | + D_INCL = D_INCL*RAD; |
| 29 | + |
| 30 | + %Generate the launch azimuths |
| 31 | + Incl_arr = [INCL INCL INCL+D_INCL INCL+D_INCL]; |
| 32 | + DT_arr = [0 LW_LIMIT 0 LW_LIMIT]; |
| 33 | + |
| 34 | + AZL_arr = zeros(4,1); |
| 35 | + |
| 36 | + for i=1:4 |
| 37 | + [AZL_arr(i), Lambda_arr(i)] = OptimumLaunchAzimuth(LAT, Incl_arr(i), DT_arr(i), ASC, R_EARTH, EARTH_RATE, V_ORBIT, DR, DTOPT); |
| 38 | + endfor |
| 39 | + |
| 40 | + %AZL_arr/RAD |
| 41 | + %Lambda_arr/RAD |
| 42 | + |
| 43 | + %Calculate matrix |
| 44 | + for i=1:4 |
| 45 | + A(i,1) = 1; |
| 46 | + A(i,2) = Incl_arr(i)*DEG; |
| 47 | + A(i,3) = Lambda_arr(i)*DEG; |
| 48 | + A(i,4) = Incl_arr(i)*Lambda_arr(i)*DEG*DEG; |
| 49 | + endfor |
| 50 | + |
| 51 | + %A |
| 52 | + COEF = A^-1*(AZL_arr*DEG); |
| 53 | + |
| 54 | + %Output prints |
| 55 | + printf("\nSATURN IB LVDC LAUNCH AZIMUTH POLYNOMIAL CALCULATOR 1.0\n"); |
| 56 | + printf("\nLaunch latitude %.3f deg, Inclination %.3f deg\n", LAT*DEG, INCL*DEG); |
| 57 | + printf("\nSimulated launches:\n"); |
| 58 | + for i=1:4 |
| 59 | + printf("\nLaunch %d, inclination %.2f deg, delay of %.1f seconds from optimum\n", i, Incl_arr(i)*DEG, DT_arr(i)); |
| 60 | + printf("Launch Azimuth %.4f deg, descending node angle %.4f deg\n", AZL_arr(i)*DEG, Lambda_arr(i)*DEG); |
| 61 | + endfor |
| 62 | + |
| 63 | + printf("\nCoefficients:\n"); |
| 64 | + for i=1:4 |
| 65 | + printf("LVDC_Ax[%d] %f\n",i-1,COEF(i)); |
| 66 | + endfor |
| 67 | + |
| 68 | +endfunction |
| 69 | + |
| 70 | + %To generate data for the LVDC launch azimuth polynomial |
| 71 | + function [AZL, DNA] = OptimumLaunchAzimuth(LAT_C, Incl, DT, ASC, R_EARTH, EARTH_RATE, v_orbit, DR, DTOPT) |
| 72 | + |
| 73 | + %Calculate speed at equator |
| 74 | + v_eqrot = EARTH_RATE*R_EARTH; |
| 75 | + |
| 76 | + %Inertial launch azimuth |
| 77 | + arg = cos(Incl)/cos(LAT_C); |
| 78 | + if arg > 1 |
| 79 | + arg = 1; |
| 80 | + endif |
| 81 | + beta = asin(arg); |
| 82 | + if ASC == 0 |
| 83 | + beta = pi - beta; |
| 84 | + endif |
| 85 | + |
| 86 | + %Compensate for rotating Earth |
| 87 | + v_rotx = v_orbit*sin(beta) - v_eqrot*cos(LAT_C); |
| 88 | + v_roty = v_orbit*cos(beta); |
| 89 | + AZP = atan2(v_rotx, v_roty); |
| 90 | + if AZP < 0 |
| 91 | + AZP = AZP + 2*pi; |
| 92 | + endif |
| 93 | + |
| 94 | + %Now the Shuttle equations for accounting for launch off nominal time |
| 95 | + WE_DT = EARTH_RATE*DT; |
| 96 | + A = 2*asin(sin(WE_DT/2)*cos(LAT_C)); |
| 97 | + if abs(A - DR) < 1e-4 |
| 98 | + A = DR - 1e-4; |
| 99 | + endif |
| 100 | + |
| 101 | + PHI = atan2(1 + cos(WE_DT), sin(WE_DT)*sin(LAT_C)); |
| 102 | + THET = asin(sin(A)*sin(PHI-beta)/sin(DR)); |
| 103 | + ALP = 2*atan2(-sin((A - DR)/2)*cos((THET - PHI + beta)/2), -sin((A + DR)/2)*sin((THET - PHI + beta)/2)); |
| 104 | + DELTA_PSI_TEMP = ALP - PHI - THET - beta; |
| 105 | + %DELTA_PSI_TEMP = MIDVAL(-DELTA_PSI_LIM, DELTA_PSI_TEMP, DELTA_PSI_LIM); |
| 106 | + AZL = AZP + DELTA_PSI_TEMP; |
| 107 | + |
| 108 | + %Descending node angle |
| 109 | + bias = EARTH_RATE*DTOPT; |
| 110 | + dlng = atan(sin(LAT_C)*tan(beta)); |
| 111 | + if dlng < 0 |
| 112 | + dlng = dlng + 2*pi; |
| 113 | + endif |
| 114 | + h = pi - dlng + bias; %lng |
| 115 | + if h < 0 |
| 116 | + h = h + 2*pi; |
| 117 | + endif |
| 118 | + DNA = h - WE_DT; |
| 119 | + |
| 120 | + endfunction |
| 121 | + |
| 122 | + function D = MIDVAL(A, B, C) |
| 123 | + if B < A |
| 124 | + D = A; |
| 125 | + elseif B > C |
| 126 | + D = C; |
| 127 | + else |
| 128 | + D = B; |
| 129 | + endif |
| 130 | + endfunction |
0 commit comments