Skip to content

Logistic Regression and Randomized Search CV #301

Open
@NogaGershonB

Description

@NogaGershonB

Hello,
I'm having trouble running logistic regression with randomized search cv.

`param_test = {'penalty': ['l1', 'l2'],
'C': [1 , 0.5, 0.1, 0.05, 0.01],
'class_weight': ['balanced', None],
'solver': ['liblinear', 'lbfgs'],
'max_iter': [100,200,300]}

n_HP_points_to_test=10
clf = LogisticRegression()
gs = RandomizedSearchCV(
estimator=clf, param_distributions=param_test,
n_iter=n_HP_points_to_test,
scoring='accuracy',
cv=3,
refit=True,
random_state=314,
verbose=True)
gs.fit(X_train_scaled, y_train)`

and this is the error message I get: TypeError: Cannot clone object '<interpret.glassbox.linear.LogisticRegression object at 0x7f7f18125250>' (type <class 'interpret.glassbox.linear.LogisticRegression'>): it does not seem to be a scikit-learn estimator as it does not implement a 'get_params' method.

Thanks,
Noga

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions