-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconstraint.go
671 lines (601 loc) · 18.9 KB
/
constraint.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// Copyright 2021 Irfan Sharif.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package solver
import (
"fmt"
"strings"
"github.com/irfansharif/solver/internal/pb"
)
// Constraint is what a model attempts to satisfy when deciding on a solution.
type Constraint interface {
// OnlyEnforceIf enforces the constraint iff all literals listed are true. If
// not explicitly called, of if the list is empty, then the constraint will
// always be enforced.
//
// NB: Only a few constraints support enforcement:
// - NewBooleanOrConstraint
// - NewBooleanAndConstraint
// - NewLinearConstraint
//
// Intervals support enforcement too, but only with a single literal.
OnlyEnforceIf(literals ...Literal) Constraint
// Stringer provides a printable format representation for the constraint.
fmt.Stringer
// WithName sets a name for the constraint; used for debugging/logging
// purposes.
//
// TODO(irfansharif): We don't use it in our pretty printing, yet. That
// aside it would be nice to have a unified way to name things. For intvars,
// literal, intervals -- it's provided as part of initializer. We use
// separate things for models and constraints.
WithName(name string) Constraint
// protos returns the underlying CP-SAT constraint protobuf representations.
protos() []*pb.ConstraintProto
}
// constraint is an implementation of the Constraint interface.
type constraint struct {
pb *pb.ConstraintProto
// TODO(irfansharif): We hold onto the entire string representation in
// memory, which isn't ... great. We could do better by creating stand-alone
// types for each kind of constraint and holding onto all the elements we
// need.
str string
enforcement []Literal
}
// WithName is part of the Constraint interface.
func (c *constraint) WithName(name string) Constraint {
c.pb.Name = name
return c
}
// String is part of the Constraint interface.
func (c *constraint) String() string {
if c.str == "" {
return fmt.Sprintf("<unimplemented stringer>: %s", c.pb.String())
}
var b strings.Builder
b.WriteString(c.str)
if len(c.enforcement) != 0 {
b.WriteString(" if (")
for i, l := range c.enforcement {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(l.name())
}
b.WriteString(")")
}
return b.String()
}
var _ Constraint = &constraint{}
// NewAllDifferentConstraint forces all variables to take different values.
func NewAllDifferentConstraint(vars ...IntVar) Constraint {
var b strings.Builder
b.WriteString("all-different: ")
printVars(&b, vars...)
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_AllDiff{
AllDiff: &pb.AllDifferentConstraintProto{
Vars: intVarList(vars).indexes(),
},
},
},
str: b.String(),
}
}
// NewAllSameConstraint forces all variables to take the same values.
func NewAllSameConstraint(vars ...IntVar) Constraint {
var b strings.Builder
b.WriteString("all-same: ")
printVars(&b, vars...)
var cs []Constraint
for i := range vars {
if i == 0 {
continue
}
cs = append(cs, NewMaximumConstraint(vars[i-1], vars[i]))
}
return constraints{cs: cs, str: b.String()}
}
// NewAtMostKConstraint ensures that no more than k literals are true.
func NewAtMostKConstraint(k int, literals ...Literal) Constraint {
var c Constraint
if k == 1 {
c = newAtMostOneConstraint(literals...)
} else {
lb, ub := int64(0), int64(k)
c = NewLinearConstraint(Sum(asIntVars(literals)...), NewDomain(lb, ub))
}
var b strings.Builder
b.WriteString("at-most-k: ")
printLiterals(&b, literals...)
b.WriteString(fmt.Sprintf(" | %d", k))
c.(*constraint).str = b.String() // hijack the string representation
return c
}
// NewAtLeastKConstraint ensures that at least k literals are true.
func NewAtLeastKConstraint(k int, literals ...Literal) Constraint {
var c Constraint
if k == 1 {
c = NewBooleanOrConstraint(literals...)
} else {
lb, ub := int64(k), int64(len(literals))
c = NewLinearConstraint(Sum(asIntVars(literals)...), NewDomain(lb, ub))
}
var b strings.Builder
b.WriteString("at-least-k: ")
printLiterals(&b, literals...)
b.WriteString(fmt.Sprintf(" | %d", k))
c.(*constraint).str = b.String() // hijack the string representation
return c
}
// NewExactlyKConstraint ensures that exactly k literals are true.
func NewExactlyKConstraint(k int, literals ...Literal) Constraint {
var c Constraint
if k == 1 {
c = newExactlyOneConstraint(literals...)
} else {
lb, ub := int64(k), int64(k)
c = NewLinearConstraint(Sum(asIntVars(literals)...), NewDomain(lb, ub))
}
var b strings.Builder
b.WriteString("exactly-k: ")
printLiterals(&b, literals...)
b.WriteString(fmt.Sprintf(" | %d", k))
c.(*constraint).str = b.String() // hijack the string representation
return c
}
// NewBooleanAndConstraint ensures that all literals are true.
func NewBooleanAndConstraint(literals ...Literal) Constraint {
var b strings.Builder
b.WriteString("boolean-and: ")
printLiterals(&b, literals...)
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_BoolAnd{
BoolAnd: &pb.BoolArgumentProto{
Literals: asIntVars(literals).indexes(),
},
},
},
str: b.String(),
}
}
// NewBooleanOrConstraint ensures that at least one literal is true. It can be
// thought of as a special case of NewAtLeastKConstraint, but one that uses a
// more efficient internal encoding.
func NewBooleanOrConstraint(literals ...Literal) Constraint {
var b strings.Builder
b.WriteString("boolean-or: ")
printLiterals(&b, literals...)
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_BoolOr{
BoolOr: &pb.BoolArgumentProto{
Literals: asIntVars(literals).indexes(),
},
},
},
str: b.String(),
}
}
// NewBooleanXorConstraint ensures that an odd number of the literals are true.
func NewBooleanXorConstraint(literals ...Literal) Constraint {
var b strings.Builder
b.WriteString("boolean-xor: ")
printLiterals(&b, literals...)
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_BoolXor{
BoolXor: &pb.BoolArgumentProto{
Literals: asIntVars(literals).indexes(),
},
},
},
str: b.String(),
}
}
// NewImplicationConstraint ensures that the first literal implies the second.
func NewImplicationConstraint(a, b Literal) Constraint {
c := NewBooleanOrConstraint(a.Not(), b)
c.(*constraint).str = fmt.Sprintf("implication: %s → %s",
a.name(), b.name()) // hijack the string representation
return c
}
// NewAllowedLiteralAssignmentsConstraint ensures that the values of the n-tuple
// formed by the given literals is one of the listed n-tuple assignments.
func NewAllowedLiteralAssignmentsConstraint(literals []Literal, assignments [][]bool) Constraint {
return newLiteralAssignmentsConstraintInternal(literals, assignments)
}
// NewForbiddenLiteralAssignmentsConstraint ensures that the values of the
// n-tuple formed by the given literals is not one of the listed n-tuple
// assignments.
func NewForbiddenLiteralAssignmentsConstraint(literals []Literal, assignments [][]bool) Constraint {
c := newLiteralAssignmentsConstraintInternal(literals, assignments)
c.pb.GetTable().Negated = true
return c
}
// NewDivisionConstraint ensures that the target is to equal to
// numerator/denominator. It also ensures that the denominator is non-zero.
func NewDivisionConstraint(target, numerator, denominator IntVar) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_IntDiv{
IntDiv: &pb.IntegerArgumentProto{
Target: target.index(),
Vars: intVarList([]IntVar{numerator, denominator}).indexes(),
},
},
},
str: fmt.Sprintf("%s == %s / %s", target.name(), numerator.name(), denominator.name()),
}
}
// NewProductConstraint ensures that the target to equal to the product of all
// multiplicands. An empty multiplicands list forces the target to be equal to
// one.
func NewProductConstraint(target IntVar, multiplicands ...IntVar) Constraint {
var b strings.Builder
for i, m := range multiplicands {
if i != 0 {
b.WriteString(" * ")
}
b.WriteString(m.name())
}
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_IntProd{
IntProd: &pb.IntegerArgumentProto{
Target: target.index(),
Vars: intVarList(multiplicands).indexes(),
},
},
},
str: fmt.Sprintf("%s == %s", target.name(), b.String()),
}
}
// NewMaximumConstraint ensures that the target is equal to the maximum of all
// variables.
func NewMaximumConstraint(target IntVar, vars ...IntVar) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_IntMax{
IntMax: &pb.IntegerArgumentProto{
Target: target.index(),
Vars: intVarList(vars).indexes(),
},
},
},
}
}
// NewMinimumConstraint ensures that the target is equal to the minimum of all
// variables.
func NewMinimumConstraint(target IntVar, vars ...IntVar) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_IntMin{
IntMin: &pb.IntegerArgumentProto{
Target: target.index(),
Vars: intVarList(vars).indexes(),
},
},
},
}
}
// NewModuloConstraint ensures that the target to equal to dividend%divisor. The
// domain of the divisor must be strictly positive.
func NewModuloConstraint(target, dividend, divisor IntVar) Constraint {
if !divisor.domain().positive() {
panic("invalid domain for divisor: not strictly positive")
}
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_IntMod{
IntMod: &pb.IntegerArgumentProto{
Target: target.index(),
Vars: intVarList([]IntVar{dividend, divisor}).indexes(),
},
},
},
str: fmt.Sprintf("%s == %s %% %s", target.name(), dividend.name(), divisor.name()),
}
}
// NewAllowedAssignmentsConstraint ensures that the values of the n-tuple
// formed by the given variables is one of the listed n-tuple assignments.
func NewAllowedAssignmentsConstraint(vars []IntVar, assignments [][]int64) Constraint {
return newAssignmentsConstraintInternal(vars, assignments)
}
// NewForbiddenAssignmentsConstraint ensures that the values of the n-tuple
// formed by the given variables is not one of the listed n-tuple assignments.
func NewForbiddenAssignmentsConstraint(vars []IntVar, assignments [][]int64) Constraint {
c := newAssignmentsConstraintInternal(vars, assignments)
c.pb.GetTable().Negated = true
return c
}
// NewLinearConstraint ensures that the linear expression lies in the given
// domain. It can be used to express linear equalities of the form:
//
// 0 <= x + 2y <= 10
//
func NewLinearConstraint(e LinearExpr, d Domain) Constraint {
var b strings.Builder
b.WriteString("linear-constraint: ")
b.WriteString(e.String())
b.WriteString(" in ")
b.WriteString(d.String())
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_Linear{
Linear: &pb.LinearConstraintProto{
Vars: e.vars(),
Coeffs: e.coeffs(),
Domain: d.list(e.offset()),
},
},
},
str: b.String(),
}
}
// NewLinearMaximumConstraint ensures that the target is equal to the maximum of
// all linear expressions.
func NewLinearMaximumConstraint(target LinearExpr, exprs ...LinearExpr) Constraint {
var b strings.Builder
b.WriteString("linear-max: ")
b.WriteString(fmt.Sprintf("%s == max(", target.String()))
for i, e := range exprs {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(e.String())
}
b.WriteString(")")
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_LinMax{
LinMax: &pb.LinearArgumentProto{
Target: target.proto(),
Exprs: linearExprList(exprs).protos(),
},
},
},
str: b.String(),
}
}
// NewLinearMinimumConstraint ensures that the target is equal to the minimum of
// all linear expressions.
func NewLinearMinimumConstraint(target LinearExpr, exprs ...LinearExpr) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_LinMin{
LinMin: &pb.LinearArgumentProto{
Target: target.proto(),
Exprs: linearExprList(exprs).protos(),
},
},
},
}
}
// NewElementConstraint ensures that the target is equal to vars[index].
// Implicitly index takes on one of the values in [0, len(vars)).
func NewElementConstraint(target, index IntVar, vars ...IntVar) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_Element{
Element: &pb.ElementConstraintProto{
Target: target.index(),
Index: index.index(),
Vars: intVarList(vars).indexes(),
},
},
},
}
}
// NewNonOverlappingConstraint ensures that all the intervals are disjoint.
// More formally, there must exist a sequence such that for every pair of
// consecutive intervals, we have intervals[i].end <= intervals[i+1].start.
// Intervals of size zero matter for this constraint. This is also known as a
// disjunctive constraint in scheduling.
func NewNonOverlappingConstraint(intervals ...Interval) Constraint {
var b strings.Builder
b.WriteString("non-overlapping: ")
for i, itv := range intervals {
if i != 0 {
b.WriteString(", ")
}
start, end, _ := itv.Parameters()
b.WriteString(fmt.Sprintf("{%s, %s}", start.name(), end.name()))
}
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_NoOverlap{
NoOverlap: &pb.NoOverlapConstraintProto{
Intervals: intervalList(intervals).indexes(),
},
},
},
str: b.String(),
}
}
// NewNonOverlapping2DConstraint ensures that the boxes defined by the following
// don't overlap:
//
// [xintervals[i].start, xintervals[i].end)
// [yintervals[i].start, yintervals[i].end)
//
// Intervals/boxes of size zero are considered for overlap if the last argument
// is true.
func NewNonOverlapping2DConstraint(
xintervals []Interval,
yintervals []Interval,
boxesWithNoAreaCanOverlap bool,
) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_NoOverlap_2D{
NoOverlap_2D: &pb.NoOverlap2DConstraintProto{
XIntervals: intervalList(xintervals).indexes(),
YIntervals: intervalList(yintervals).indexes(),
BoxesWithNullAreaCanOverlap: boxesWithNoAreaCanOverlap,
},
},
},
}
}
// NewCumulativeConstraint ensures that the sum of the demands of the intervals
// (intervals[i]'s demand is specified in demands[i]) at each interval point
// cannot exceed a max capacity. The intervals are interpreted as [start, end).
// Intervals of size zero are ignored.
func NewCumulativeConstraint(capacity IntVar, intervals []Interval, demands []IntVar) Constraint {
if len(intervals) != len(demands) {
panic("mismatched lengths of intervals and demands")
}
var b strings.Builder
for i := range intervals {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(fmt.Sprintf("%s: %s", intervals[i].name(), demands[i].name()))
}
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_Cumulative{
Cumulative: &pb.CumulativeConstraintProto{
Capacity: capacity.index(),
Intervals: intervalList(intervals).indexes(),
Demands: intVarList(demands).indexes(),
},
},
},
str: fmt.Sprintf("cumulative: %s | %s", b.String(), capacity.name()),
}
}
// newAtMostOneConstraint is a special case of NewAtMostKConstraint that uses a
// more efficient internal encoding.
func newAtMostOneConstraint(literals ...Literal) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_AtMostOne{
AtMostOne: &pb.BoolArgumentProto{
Literals: asIntVars(literals).indexes(),
},
},
},
}
}
// newExactlyOneConstraint is a special case of NewExactlyKConstraint that uses
// a more efficient internal encoding.
func newExactlyOneConstraint(literals ...Literal) Constraint {
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_ExactlyOne{
ExactlyOne: &pb.BoolArgumentProto{
Literals: asIntVars(literals).indexes(),
},
},
},
}
}
// OnlyEnforceIf is part of the Constraint interface.
func (c *constraint) OnlyEnforceIf(literals ...Literal) Constraint {
c.pb.EnforcementLiteral = asIntVars(literals).indexes()
c.enforcement = append(c.enforcement, literals...)
return c
}
// protos is part of the Constraint interface.
func (c *constraint) protos() []*pb.ConstraintProto {
return []*pb.ConstraintProto{c.pb}
}
type constraints struct {
cs []Constraint
name, str string
}
var _ Constraint = &constraints{}
// WithName is part of the Constraint interface.
func (c constraints) WithName(name string) Constraint {
c.name = name
for i := range c.cs {
c.cs[i] = c.cs[i].WithName(name)
}
return c
}
// String is part of the Constraint interface.
func (c constraints) String() string {
return c.str
}
// OnlyEnforceIf is part of the Constraint interface.
func (c constraints) OnlyEnforceIf(literals ...Literal) Constraint {
for _, cons := range c.cs {
cons.OnlyEnforceIf(literals...)
}
return c
}
// protos is part of the Constraint interface.
func (c constraints) protos() []*pb.ConstraintProto {
var res []*pb.ConstraintProto
for _, cons := range c.cs {
res = append(res, cons.protos()...)
}
return res
}
func newLiteralAssignmentsConstraintInternal(literals []Literal, assignments [][]bool) *constraint {
var integerAssignments [][]int64
for _, assignment := range assignments { // convert [][]bool to [][]int64
var integerAssignment []int64
for _, a := range assignment {
i := 0
if a {
i = 1
}
integerAssignment = append(integerAssignment, int64(i))
}
integerAssignments = append(integerAssignments, integerAssignment)
}
return newAssignmentsConstraintInternal(asIntVars(literals), integerAssignments)
}
func newAssignmentsConstraintInternal(vars []IntVar, assignments [][]int64) *constraint {
var values []int64
for _, assignment := range assignments {
if len(assignment) != len(vars) {
panic("mismatched assignment and vars length")
}
values = append(values, assignment...)
}
return &constraint{
pb: &pb.ConstraintProto{
Constraint: &pb.ConstraintProto_Table{
Table: &pb.TableConstraintProto{
Vars: intVarList(vars).indexes(),
Values: values,
},
},
},
}
}
// printVars is a helper to print out intvars of the form: i1, i2, ..., iN.
func printVars(b *strings.Builder, vars ...IntVar) {
for i, v := range vars {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(v.name())
}
}
// printLiterals is a helper to print out literals of the form: l1, l2, ..., lN.
func printLiterals(b *strings.Builder, literals ...Literal) {
for i, l := range literals {
if i != 0 {
b.WriteString(", ")
}
b.WriteString(l.name())
}
}