-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOEP.f90
681 lines (609 loc) · 19.2 KB
/
OEP.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
subroutine analytic_Veff(iscf)
!..Global
use global; use grid_params; use basis_set; use orbocc; use matrices
use energies, ONLY:E_HOMO; use functional_m; use DFT_par
implicit none
!..Argument
integer :: iscf
!..Local
logical :: automatic_limit
logical,allocatable :: neg_scdens(:)
integer :: k, l, m, ig, igp, ia, ii, n_occ, info
real(dp),allocatable :: Pkn(:,:), A_kn(:,:), Qkn(:,:), DMMM(:,:)
real(dp) :: B_kn(lnbasis_pot), R_kn(lnbasis_pot), S_kn(lnbasis_pot)
real(dp),allocatable :: Akn_inv(:,:), FF(:,:), Fii(:,:), FFp(:,:)
real(dp) :: SAinvS, SAinvB, AinvS(lnbasis_pot), xmu_oep, fc_mix, rr
real(dp),allocatable :: ovlap3nat(:,:,:), A_tild(:,:)
real(dp) :: DDD(lnbasis,lnbasis)
real(dp) :: B_tild(lnbasis_pot), B_kn_in(lnbasis_pot)
real(dp) :: dm_gr, pos, pos_old, fac_dif
real(dp), allocatable :: Schdens(:)
real(dp) :: Uhx(ngrid), Uxx(ngrid)
real(dp) :: Delta_e, Delta_n, AinvB(lnbasis_pot)
real(dp) :: X_bar(lnbasis_pot), uxxtmp, uhxtmp, ss, volume_neg, fc_pen_v
real(dp), external :: Dn_De_FD
real(dp) :: DV_bs(lnbasis_pot), V_bs_in(lnbasis_pot)
real(dp), save :: pos_mix1
real(dp) :: fc_neg
integer :: ipos, Nipos=6000
automatic_limit = .false. !Automatic lambda -> 0
do_ceda = .false. !Common energy denomicator approximation
n_occ=max(ibond(1),ibond(2)) ! HOMO index
if (automatic_limit .and. do_ceda) then
svd_cut=1d10
endif
if (.not.allocated(vec_nat_grid)) allocate ( vec_nat_grid(ngrid,lnbasis) )
if(.not.allocated(chdens_gr)) allocate(chdens_gr(ngrid,3))
if ( .not.allocated(Vcoul) ) allocate( Vcoul(lnbasis,lnbasis) )
if ( .not.allocated(Vexch) ) allocate( Vexch(lnbasis,lnbasis) )
allocate (ovlap3nat(lnbasis, lnbasis, lnbasis_pot ), DMMM(nbasis,nbasis) )
allocate (A_kn(lnbasis_pot,lnbasis_pot), A_tild(lnbasis_pot,lnbasis_pot))
allocate (Akn_inv(lnbasis_pot,lnbasis_pot), FF(lnbasis, lnbasis), FFp(lnbasis, lnbasis) )
allocate (Fii(lnbasis, lnbasis), Schdens(ngrid), neg_scdens(ngrid) )
call orbs_on_grid(maxorb)
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,ii,ia,l,m,DDD)
!$OMP DO
do k=1,nbasis_pot
do ia=1,nbasis
do l=1,nbasis
DDD(l,ia)=0.d0
do m=1,nbasis
DDD(l,ia) = DDD(l,ia) + vecnat(m,ia)* ovlap3(l,m,k)
enddo
enddo
enddo
do ii=1,nbasis
do ia=1,ii
ovlap3nat(ii,ia,k)=0.d0
do l=1,nbasis
ovlap3nat(ii,ia,k)=ovlap3nat(ii,ia,k) + vecnat(l,ii)*DDD(l,ia)
enddo
ovlap3nat(ia,ii,k)=ovlap3nat(ii,ia,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
if (Functional == 'RHF' .or. Functional == 'DFT' .or. Functional == 'RHA' ) then
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,l,ii,ia)
!$OMP DO
do k=1,nbasis_pot
do l=1,nbasis_pot
A_kn(k,l)=0.d0
do ii=1, n_occ
do ia=n_occ+1,nbasis
A_kn(k,l) = A_kn(k,l) + occnum(ii,3)*ovlap3nat(ii,ia,k)*ovlap3nat(ia,ii,l) &
/ max(ennat(ia)-ennat(ii), zero)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,l,ii,ia,Delta_n,Delta_e)
!$OMP DO
do k=1,nbasis_pot
do l=1,nbasis_pot
A_kn(k,l)=0.d0
do ii=1, nbasis
do ia=1, nbasis; if (ia /= ii ) then
Delta_n=occnum(ii,3) - occnum(ia,3)
if ( abs(Delta_n) > 2.d0*Dn_lim ) then
Delta_e=ennat(ia) - ennat(ii)
if(abs(Delta_e) < small_e) then
if ( Delta_e >= 0 ) then
Delta_e=small_e
else
Delta_e=-small_e
endif
endif
A_kn(k,l) = A_kn(k,l) + ovlap3nat(ii,ia,k)*ovlap3nat(ia,ii,l) &
* Delta_n/Delta_e
endif
endif; enddo
enddo
A_kn(k,l)=0.5d0*A_kn(k,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
if (xld > zero .or. automatic_limit) call invert_Akn(A_kn, Akn_inv, svd_cut)
if (Functional == 'RHF' .or. Functional == 'DFT' .or. Functional == 'RHA' ) then
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ii,ia,k,l)
!$OMP DO
do ii=1, n_occ
do ia=n_occ+1,nbasis
! do ii=1, nbasis
! do ia=1, nbasis
FF(ia,ii) = 0.d0
do k=1,nbasis
do l=1,nbasis
if (l < k) then
FF(ia,ii) = FF(ia,ii) + vecnat(k,ia)*(F(k,l,1)-Hcore(k,l))*vecnat(l,ii)
else
FF(ia,ii) = FF(ia,ii) + vecnat(k,ia)*(F(l,k,1)-Hcore(l,k))*vecnat(l,ii)
endif
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else !RDMFT
do ii=1, nbasis
fac_dif=0.5d0*fac_h(ii)
do k=1,nbasis
do l=1,k
Fii(k,l)=F(k,l,ii)-fac_dif*hcore(k,l)-F_ha(k,l,ii)-F_x(k,l,ii)
enddo
enddo
do ia=1, nbasis
FFp(ia,ii)=0.d0
do k=1,nbasis
do l=1,nbasis
if(l<k) then
FFp(ia,ii) = FFp(ia,ii) &
+ vecnat(k,ia)*Fii(k,l)*vecnat(l,ii)
else
FFp(ia,ii) = FFp(ia,ii) &
+ vecnat(k,ia)*Fii(l,k)*vecnat(l,ii)
endif
enddo
enddo
enddo
enddo
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ii,ia)
!$OMP DO
do ii=1,nbasis
do ia=1,nbasis
FF(ia,ii) = FFp(ia,ii)-FFp(ii,ia)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif !(Functional == 'RHF' .or. Functional == 'DFT' )
print*, 'hrsreghgksrgkusregksrueyghfksehrgflserhglsriughsrileu'
if ( Functional == 'DFT' .or. Functional == 'RHF' .or. Functional == 'RHA' ) then
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,ii,ia)
!$OMP DO
do k=1,nbasis_pot
B_kn(k)=0.d0
do ii=1, n_occ
do ia=n_occ+1,nbasis
B_kn(k) = B_kn(k) + occnum(ii,3)*ovlap3nat(ii,ia,k)*FF(ia,ii)&
/ max(ennat(ia)-ennat(ii), zero)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,ii,ia,Delta_n,Delta_e)
!$OMP DO
do k=1,nbasis_pot
B_kn(k)=0.d0
do ii=1, nbasis
do ia=1, nbasis
if (ia /= ii ) then
Delta_n=occnum(ii,3) - occnum(ia,3)
if ( abs(Delta_n) > 2.d0*Dn_lim ) then
Delta_e=ennat(ia)-ennat(ii)
if(abs(Delta_e) < small_e) then
if ( Delta_e >= 0 ) then
Delta_e=small_e
else
Delta_e=-small_e
endif
endif
B_kn(k) = B_kn(k) + ovlap3nat(ii,ia,k)*FF(ia,ii)/Delta_e
endif
endif
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
!.....Density on Grid
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,ia,dm_gr)
!$OMP DO
do ig=1,ngrid
chdens_gr(ig,1) = 0.d0
do ia=1,nbasis
dm_gr = vec_nat_grid(ig,ia)*vec_nat_grid(ig,ia)
chdens_gr(ig,1) = chdens_gr(ig,1) + occnum(ia,1)*dm_gr
enddo
chdens_gr(ig,3) = 2.d0*chdens_gr(ig,1); chdens_gr(ig,2)=chdens_gr(ig,1)
enddo
!$OMP END DO
!$OMP END PARALLEL
grad_S=.false.
!..Calculate the CEDA part of A and B (CPU transistor exterminator!)
if ((.not. grad_S) &!.and.(Functional == 'DFT' .or. Functional == 'RHF') &
.and. (xld > zero .or. do_ceda)) then
allocate (Pkn(lnbasis_pot,lnbasis_pot), Qkn(lnbasis_pot,lnbasis_pot))
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,igp,rr,ia,dm_gr,uxxtmp)
!$OMP DO
do ig=1,ngrid
uxxtmp=0.d0
if ( Functional /= 'DFT' .or. hyb_mix > small) then
do igp=1,ngrid
dm_gr=0.d0
do ia=1,n_occ
dm_gr= dm_gr + occnum(ia,3)*vec_nat_grid(ig,ia)*vec_nat_grid(igp,ia)
enddo
if(ig /= igp) then
rr=sqrt(&
(x_grid(ig)-x_grid(igp))**2+&
(y_grid(ig)-y_grid(igp))**2+&
(z_grid(ig)-z_grid(igp))**2)
uxxtmp=uxxtmp + w_grid(igp)*dm_gr**2 / rr
endif
enddo
endif
Uxx(ig)=uxxtmp
enddo
!$OMP END DO
!$OMP END PARALLEL
if (Functional == 'DFT' .or. Functional == 'RHF' .or. Functional == 'RHA' ) then
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,ii,ia,k,l)
!$OMP DO
do k=1,nbasis_pot
do l=1,k
Pkn(k,l) = 0.d0
Qkn(k,l) = 0.d0
do ig=1,ngrid
Pkn(k,l) = Pkn(k,l) + w_grid(ig)*bas_f_grid_pot(ig,k)*chdens_gr(ig,3)*bas_f_grid_pot(ig,l)
enddo
do ii=1,n_occ
do ia=1,n_occ
Qkn(k,l) = Qkn(k,l) + occnum(ii,3)*ovlap3nat(ii,ia,k)*ovlap3nat(ia,ii,l)
enddo
enddo
Pkn(l,k) = Pkn(k,l)
Qkn(l,k) = Qkn(k,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else !RDMFT
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,ii,ia,k,l)
!$OMP DO
do k=1,nbasis_pot
do l=1,k
Pkn(k,l) = 0.d0
Qkn(k,l) = 0.d0
do ig=1,ngrid
Pkn(k,l) = Pkn(k,l) + w_grid(ig)*bas_f_grid_pot(ig,k)*chdens_gr(ig,3)*bas_f_grid_pot(ig,l)
enddo
do ii=1, nbasis
do ia=1, nbasis
Qkn(k,l) = Qkn(k,l) + occnum(ii,3)*ovlap3nat(ii,ia,k)*ovlap3nat(ia,ii,l)
enddo
enddo
Pkn(l,k) = Pkn(k,l)
Qkn(l,k) = Qkn(k,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig, igp, rr, uhxtmp )
!$OMP DO
do ig=1,ngrid
uhxtmp =0.d0
do igp=1,ngrid
if (ig /= igp) then
rr=sqrt(&
(x_grid(ig)-x_grid(igp))**2+&
(y_grid(ig)-y_grid(igp))**2+&
(z_grid(ig)-z_grid(igp))**2)
uhxtmp = uhxtmp + w_grid(igp)*chdens_gr(igp,3) / rr
endif
enddo
Uhx(ig) = uhxtmp
if ( Functional == 'DFT') then
Uhx(ig) = Uhx(ig) + Vlc(1,ig) + Vlxc(1,ig)
endif
Uhx(ig) = chdens_gr(ig,3)*Uhx(ig)
enddo
!$OMP END DO
!$OMP END PARALLEL
fc_mix=0.5d0
if ( Functional == 'DFT' .and. hyb_mix > small) fc_mix=0.5d0*hyb_mix
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k, ig)
!$OMP DO
do k=1,nbasis_pot
R_kn(k) = 0.d0
do ig=1,ngrid
R_kn(k)=R_kn(k)+ w_grid(ig)*bas_f_grid_pot(ig,k)*(Uhx(ig)-fc_mix*Uxx(ig))
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
if (Functional == 'DFT' .or. Functional == 'RHF' .or. Functional == 'RHA') then
do k=1,nbasis_pot
S_kn(k)=0.d0
do ii=1,n_occ
do ia=1,n_occ
S_kn(k) = S_kn(k) + occnum(ii,3)*ovlap3nat(ii,ia,k)*FF(ii,ia)
enddo
enddo
enddo
else !RDMFT
do k=1,nbasis_pot
S_kn(k)=0.d0
do ii=1,nbasis
do ia=1,nbasis
S_kn(k) = S_kn(k) + ovlap3nat(ii,ia,k)*FF(ii,ia)
enddo
enddo
enddo
endif
A_tild=Pkn-Qkn; B_tild=R_kn-S_kn
deallocate (Pkn, Qkn)
else !(... .and. (xld > zero ))
A_tild=0.d0; B_tild=0.d0
endif
if(grad_S) then
A_tild=Ovchixi
B_tild=0.d0
endif
if(.not.allocated(V_bs)) then
allocate ( V_bs(lnbasis_pot), V_bs_o(lnbasis_pot) )
V_bs_o=0.d0
endif
if ( automatic_limit ) then
call do_automatic_limit(A_kn, svd_cut)
else !( .not. automatic_limit )
if (do_ceda) then
A_kn = A_tild
B_kn = B_tild
else
if(xld > small) then
A_kn = A_kn + xld*A_tild
B_kn = B_kn + xld*B_tild
endif
endif
call invert_Akn(A_kn, Akn_inv, svd_cut)
! AinvB = MATMUL(B_kn, Akn_inv)
do k=1,nbasis_pot
ss=0.d0
do l=1,nbasis_pot
ss=ss+Akn_inv(k,l)*B_kn(l)
enddo
AinvB(k)=ss
enddo
if( (.not.int_pot_basis) .or. (.not.scr_ch_const) ) then
xmu_oep=0.d0 ! Constraint applied only to integral basis xi
V_bs = AinvB
else
!..Enable screening charge and positivity constraint
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,l,ss)
!$OMP DO
do k=1,nbasis_pot
ss=0.d0
do l=1,nbasis_pot
ss=ss+Akn_inv(k,l)*X_bas_pot(l)
enddo
AinvS(k)=ss
enddo
!$OMP END DO
!$OMP END PARALLEL
SAinvS = DOT_PRODUCT(X_bas_pot, AinvS)
SAinvB = DOT_PRODUCT(X_bas_pot, AinvB)
xmu_oep=(veffnorm-SAinvB)/SAinvS
V_bs = AinvB + xmu_oep*AinvS
pos_mix1=pos_mix
pos_old=1.d20
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,ig)
!$OMP DO
do ig=1,ngrid
Schdens(ig)=0.d0
do k=1,nbasis_pot
Schdens(ig)=Schdens(ig)+V_bs(k)*charg_pot(ig,k)
enddo
if( Schdens(ig) > -zero) then
neg_scdens(ig)=.false.
else
neg_scdens(ig)=.true.
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
volume_neg=0.d0
do ig=1,ngrid
if ( neg_scdens(ig) ) volume_neg=volume_neg+w_grid(ig)
enddo
fc_pen_v=pos_penalty !/volume_neg
!........Positivity criterion
pos=0.d0
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig)
!$OMP DO REDUCTION (+:pos)
do ig=1,ngrid
if ( neg_scdens(ig) )&
pos=pos-w_grid(ig)*Schdens(ig)
enddo
!$OMP END DO
!$OMP END PARALLEL
write(6,'("Initial Positivity test:", f20.10, " electrons")')pos
B_kn_in = B_kn
V_bs_in=V_bs
!........Lool to enforce positivity of screeing charge
if(posit_const) then
Pos_l: do ipos=1,Nipos
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,ig,ss,fc_neg)
!$OMP DO
do k=1,nbasis_pot
ss=X_bas_pot(k)
do ig = 1,ngrid
if(neg_scdens(ig))&
ss=ss+w_grid(ig)*charg_pot(ig,k)
! fc_neg=1._dp/(1._dp+exp(Schdens(ig)/0.000000001_dp))
! ss=ss+w_grid(ig)*fc_neg*charg_pot(ig,k)
! ss=ss-2.d0*w_grid(ig)*charg_pot(ig,k) ! Does not work
enddo
X_bar(k)=ss
enddo
!$OMP END DO
!$OMP END PARALLEL
!...........Add penalty to B
B_kn = B_kn_in + fc_pen_v * X_bar
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(k,l,ss)
!$OMP DO
do k=1,nbasis_pot
ss=0.d0
do l=1,nbasis_pot
ss=ss+Akn_inv(k,l)*B_kn(l)
enddo
AinvB(k)=ss
enddo
!$OMP END DO
!$OMP END PARALLEL
SAinvB = DOT_PRODUCT(X_bas_pot, AinvB)
xmu_oep=(veffnorm-SAinvB)/SAinvS
!...........New Potential
DV_bs = AinvB + xmu_oep*AinvS
V_bs = (1.d0-pos_mix1)*V_bs +pos_mix1*DV_bs
!..........positivity
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,k,ss)
!$OMP DO
do ig=1,ngrid
ss=0.d0
do k=1,nbasis_pot
ss=ss+V_bs(k)*charg_pot(ig,k)
enddo
Schdens(ig)=ss
if( Schdens(ig) > -zero) then
neg_scdens(ig)=.false.
else
neg_scdens(ig)=.true.
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
pos=0.d0
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(ig,k)
!$OMP DO REDUCTION (+:pos)
do ig=1,ngrid
if ( neg_scdens(ig) )&
pos=pos-w_grid(ig)*Schdens(ig)
enddo
!$OMP END DO
!$OMP END PARALLEL
if(mod(ipos,50)==0 .or. ipos == 1) &
write(6,'(i5," Positivity test:", f20.10, " Pos mix:",e15.5)')ipos,pos,pos_mix1
!...........Convergence check
if(pos < pos_small) then
write(6,'(i5," Positivity test:", f20.10, " Pos mix:",e15.5)')ipos,pos,pos_mix1
exit Pos_l
endif
if( pos < pos_old ) then
pos_mix1=pos_mix1*1.01d0
else
pos_mix1=pos_mix1*0.98d0
endif
pos_old=pos
if(pos_mix1 < 1.d-12) pos_mix1=pos_mix
if(ipos == Nipos) print*,"OEP:find positive scr charge: All iterations done", ipos
enddo Pos_l
print*,"Positivity test:",pos, 'After:', ipos, 'cycles'
endif !posit_const
endif !(.not.int_pot_basis) .or. (.not.scr_ch_const) )
endif !( automatic_limit )
!..Mix for more scf iterations
if (iscf >1 ) V_bs = xmix_OEP * V_bs + (1.d0-xmix_OEP) * V_bs_o
V_bs_o = V_bs
!..Calculate Veff, i.e. V_bs matrix elements
if(.not.allocated(Veff)) allocate ( Veff(lnbasis, lnbasis) )
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(l,m,k,ss)
!$OMP DO
do l=1,nbasis
do m=1,l
ss=0.d0
do k=1, nbasis_pot
ss = ss + ovlap3(m,l,k)*V_bs(k)
enddo
Veff(m,l)= ss
Veff(l,m) = ss
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!..The effective Hamiltonian
! H_eff = Hcore + Veff
! print*,' Veff:'
! write(6,'(15F20.10)')((Veff(k,l),k=1,15),l=1,15)
! do kk=1,1 !20
do k=1,nbasis
do l=1,nbasis
DMMM(k,l)=0._dp
do ia=1,nbasis
! do ia=1,n_occ
DMMM(k,l)=DMMM(k,l) + occnum(ia,3)*vecnat(k,ia)*vecnat(l,ia)
! DMMM(k,l)=DMMM(k,l) + 2*vecnat(k,ia)*vecnat(l,ia)
enddo
enddo
enddo
print*, 'lalalallalalallllllllllllllllllllllllllllllllllllllllllllllllllllllllllll'
! call sum_intg_22(DMMM,Vcoul)
! call sum_intg_11(DMMM,Vexch)
H_eff = Hcore + Vcoul - 0.5*Vexch + Veff
!..Calculation of the objective function
! do ia=1,nbasis
! do ii=1,nbasis
! Veff_aa(ia,ii)=0.d0
! do k=1, nbasis_pot
! Veff_aa(ia,ii) = Veff_aa(ia,ii) + ovlap3nat(ia,ii,k)*V_bs(k)
! enddo
! enddo
! enddo
! if (xld > 1.d-24 ) then
! Eob = 0.d0
! do ii=1, n_occ
! do ia=n_occ+1,nbasis
! Eob = Eob + (FF(ia,ii)-Veff_aa(ia,ii))**2/max(ennat(ia)-ennat(ii),zero)
! enddo
! enddo
! SEob=0.d0
! Eob=0.d0
! do k=1, n_occ
! do l=1, n_occ
! SEob = SEob + A_tild(k,l)*V_bs(k)*V_bs(l)
! Eob = Eob + A_kn(k,l)*V_bs(k)*V_bs(l)
! enddo
! SEob = SEob-2.d0*B_tild(l)*V_bs(l)
! Eob = Eob-2.d0*B_kn(l)*V_bs(l)
! enddo
! print*,'===============For T vs S (lambda curve):'
! write(6,'("lambda, T0, S",3f20.10)')xld, Eob, SEob
! print*,'========================================='
! endif
call diagon_H(info)
E_HOMO=ennat(max(ibond(1),ibond(2)))
deallocate ( ovlap3nat, A_kn, Akn_inv, FF, A_tild, Fii, FFp )
deallocate ( Schdens, neg_scdens )
end subroutine analytic_Veff