-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
104 lines (84 loc) · 3.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import sys
import os
import argparse
import importlib
import tensorflow as tf
import keras.backend as K
from pathlib2 import Path
from keras import optimizers
from keras.models import load_model
from keras.engine import Model
from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping
from utils.VGG_CNN_F_keras import LRN
from utils.configs import parse_config
from utils.models import construct_adalabelhash
from utils.losses import construct_triplet_loss
from utils.data import load_sample_list
from utils.batches import onehot_batches
def parse_args():
parser = argparse.ArgumentParser(description='In train.py')
parser.add_argument('--gpu-id', type=str, required=False, default='0',
help='GPU ids to run')
parser.add_argument('--exp-dir', type=str, required=True,
help='Experiment directory')
parser.add_argument('--sample-file', type=str, required=True,
help='List of samples for training')
parser.add_argument('--code-len', type=int, required=True,
help='Length of hash codes')
parser.add_argument('--num-classes', type=int, required=True,
help='Number of classes')
parser.add_argument('--config-file', type=str, required=True,
help='Configuration file')
parser.add_argument('--config-opt', type=str, required=True,
help='Target option in the configuration file')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def run_train(args, optim_args):
## Initial preparation
model_dir = os.path.join(args.exp_dir, 'models', args.config_opt)
# os.makedirs(model_dir, exist_ok=True)
Path(model_dir).mkdir(parents=True, exist_ok=True)
model_check_point = ModelCheckpoint(os.path.join(model_dir, '{epoch:03d}.h5'),
period=args.save_period)
csv_logger = CSVLogger(os.path.join(model_dir, 'log.csv'))
early_stopping = EarlyStopping(monitor='loss', patience=args.patience)
## Tensorflow settings
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
K.set_session(tf.Session(config=config))
## Model construction
optimizer = getattr(importlib.import_module('keras.optimizers'),
optim_args[0])(**optim_args[1])
model = construct_adalabelhash(args.code_len, (224, 224), args.num_classes,
sim_name='innerprod')
if args.pretrain != '':
print('Load pretrained model: {}'.format(args.pretrain))
model.load_weights(args.pretrain, by_name=True)
model.compile(loss=construct_triplet_loss(num_classes=args.num_classes, k=args.k),
optimizer=optimizer)
## Construct dataloader
sample_list = load_sample_list(args.sample_file)
datagen = onehot_batches(sample_list, args.num_classes,
output_shape=(224, 224), batch_size=args.batch_size)
num_iters = int(np.ceil(float(len(sample_list)) / float(args.batch_size)))
# ## Run training iterations
model.fit_generator(datagen, num_iters, epochs=args.max_epochs, verbose=1,
callbacks=[csv_logger, model_check_point, early_stopping])
model.save(os.path.join(model_dir, 'model.h5'))
return
def main():
args = parse_args()
print('Arguments: {}'.format(args))
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
optim_args, model_args = parse_config(args.config_file, args.config_opt)
# Mergs model_args with args
for k, v in model_args.items():
setattr(args, k, v)
run_train(args, optim_args)
return
if __name__ == "__main__":
main()