-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
69 lines (60 loc) · 2.52 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# MIT Licens
#
# Copyright (c) 2018 Image & Vision Computing Lab, Institute of Information Science, Academia Sinica
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
import numpy as np
import tensorflow as tf
from scipy.misc import imresize
import os
import skimage.io as io
import warnings
from tqdm import trange
warnings.simplefilter(action='ignore', category=FutureWarning)
def data_loader(config):
dir_path_p = config.p_data_dir
dir_p = os.listdir(dir_path_p)
dir_p.sort()
dir_path_n = config.n_data_dir
dir_n = os.listdir(dir_path_n)
dir_n.sort()
p_num = len(dir_p) #30496
n_num = len(dir_n) #7664
size = config.input_scale_size
img = []
label = []
print('Loading data...')
print('Loading positive data')
for i in trange(p_num):
data = io.imread(dir_path_p + os.sep + dir_p[i])
data = imresize(data,[size,size,data.shape[2]])
img.append(data)
label.append(1)
print('Loading negative data')
for i in trange(n_num):
data = io.imread(dir_path_n + os.sep + dir_n[i])
data = imresize(data,[size,size,data.shape[2]])
img.append(data)
label.append(0)
label = np.array(label,dtype = np.float32).reshape([-1,1])
img = nhwc_to_nchw(np.array(img,dtype = np.float32))
return img,label,p_num,n_num
def nhwc_to_nchw(x):
return np.transpose(x, [0, 3, 1, 2])