-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeeplab.py
77 lines (68 loc) · 3 KB
/
deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# The MIT License (MIT)
# =====================
#
# Copyright © 2019-2020 Azavea
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the “Software”), to deal in the Software without
# restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import torch
import torchvision
from typing import Optional
class DeepLabResnet18Binary(torch.nn.Module):
def __init__(self, band_count, input_stride, divisor, pretrained):
super(DeepLabResnet18Binary, self).__init__()
resnet18 = torchvision.models.resnet.resnet18(pretrained=pretrained)
self.backbone = torchvision.models._utils.IntermediateLayerGetter(
resnet18, return_layers={'layer4': 'out'})
inplanes = 512
self.classifier = torchvision.models.segmentation.deeplabv3.DeepLabHead(
inplanes, 2)
if band_count != 3:
self.backbone.conv1 = torch.nn.Conv2d(band_count,
64,
kernel_size=7,
stride=input_stride,
padding=3,
bias=False)
if input_stride == 1:
self.factor = 16 // divisor
else:
self.factor = 32 // divisor
def forward(self, x):
[w, h] = x.shape[-2:]
features = self.backbone(
torch.nn.functional.interpolate(
x,
size=[w * self.factor, h * self.factor],
mode='bilinear',
align_corners=False))
x = features.get('out')
x = self.classifier(x)
x = torch.nn.functional.interpolate(x,
size=[w, h],
mode='bilinear',
align_corners=False)
return x
def make_deeplab_model(band_count,
input_stride=1,
divisor=8,
pretrained=True):
return DeepLabResnet18Binary(band_count, input_stride, divisor, pretrained)