|
1 |
| -# OnPLS |
| 1 | +OnPLS |
| 2 | +===== |
| 3 | + |
2 | 4 | OnPLS: Orthogonal Projections to Latent Structures in Multiblock and Path Model Data Analysis
|
| 5 | + |
| 6 | +OnPLS is a Python package for multiblock data analysis with prefiltering of unique and locally joint variation. |
| 7 | + |
| 8 | + |
| 9 | +Installation |
| 10 | +------------ |
| 11 | + |
| 12 | +The reference environment for OnPLS is Ubuntu 14.04 LTS with Python 2.7.6 or Python 3.4.3 and Numpy 1.8.2. |
| 13 | + |
| 14 | +Unless you already have Numpy installed, you need to install it: |
| 15 | +``` |
| 16 | +$ sudo apt-get install python-numpy |
| 17 | +``` |
| 18 | +or |
| 19 | +``` |
| 20 | +$ sudo apt-get install python3-numpy |
| 21 | +``` |
| 22 | + |
| 23 | +In order to run the tests, you may also need to install Nose: |
| 24 | +``` |
| 25 | +$ sudo apt-get install python-nose |
| 26 | +``` |
| 27 | +or |
| 28 | +``` |
| 29 | +$ sudo apt-get install python3-nose |
| 30 | +``` |
| 31 | + |
| 32 | +**Downloading the latest development version** |
| 33 | + |
| 34 | +Clone the Github repository |
| 35 | + |
| 36 | +``` |
| 37 | +$ git clone https://github.com/tomlof/OnPLS.git |
| 38 | +``` |
| 39 | +Preferably, you would fork it first and clone your own repository. |
| 40 | + |
| 41 | +Add OnPLS to your Python path: |
| 42 | +``` |
| 43 | +$ export $PYTHONPATH=$PYTHONPATH:/directory/to/OnPLS |
| 44 | +``` |
| 45 | + |
| 46 | +Stable reseases with setup scripts will be included in future versions. |
| 47 | + |
| 48 | +You are now ready to use your fresh installation of OnPLS! |
| 49 | + |
| 50 | + |
| 51 | +Quick start |
| 52 | +----------- |
| 53 | + |
| 54 | +A simple example of the usage: |
| 55 | + |
| 56 | +```python |
| 57 | +import numpy as np |
| 58 | +import OnPLS |
| 59 | + |
| 60 | +np.random.seed(42) |
| 61 | + |
| 62 | +n, p_1, p_2, p_3 = 4, 3, 4, 5 |
| 63 | +t = np.sort(np.random.randn(n, 1), axis=0) |
| 64 | +p1 = np.sort(np.random.randn(p_1, 1), axis=0) |
| 65 | +p2 = np.sort(np.random.randn(p_2, 1), axis=0) |
| 66 | +p3 = np.sort(np.random.randn(p_3, 1), axis=0) |
| 67 | +X1 = np.dot(t, p1.T) + 0.1 * np.random.randn(n, p_1) |
| 68 | +X2 = np.dot(t, p2.T) + 0.1 * np.random.randn(n, p_2) |
| 69 | +X3 = np.dot(t, p3.T) + 0.1 * np.random.randn(n, p_3) |
| 70 | + |
| 71 | +# Define the connections between blocks |
| 72 | +predComp = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] |
| 73 | +# Define the numbers of non-global components |
| 74 | +orthComp = [1, 1, 1] |
| 75 | + |
| 76 | +# Create the estimator |
| 77 | +onpls = OnPLS.estimators.OnPLS(predComp, orthComp) |
| 78 | + |
| 79 | +# Fit a model |
| 80 | +onpls.fit([X1, X2, X3]) |
| 81 | + |
| 82 | +# Perform prediction of all matrices from all connected matrices |
| 83 | +Xhat = onpls.predict([X1, X2, X3]) |
| 84 | + |
| 85 | +# Compute prediction score |
| 86 | +score = onpls.score([X1, X2, X3]) |
| 87 | +``` |
0 commit comments