-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathculsp_kernel.cu
314 lines (208 loc) · 5.92 KB
/
culsp_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright 2010 Rich Townsend <[email protected]>
//
// This file is part of CULSP.
//
// CULSP is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// CULSP is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with CULSP. If not, see <http://www.gnu.org/licenses/>.
#ifndef _CULSP_KERNEL_
#define _CULSP_KERNEL_
#include <curand.h>
#include <curand_kernel.h>
#define TWOPI 6.2831853071796f
#define MAX 100000
#define RANDOM(a) ( (float) (
__global__ void setup_curand_kernel(curandState *state, unsigned int seed)
{
int id = threadIdx.x + blockIdx.x * BLOCK_SIZE;
/* Each thread gets same seed, a different sequence
number, no offset */
curand_init(seed, id, 0, &state[id]);
}
__global__ void
__launch_bounds__(BLOCK_SIZE)
culsp_kernel(float *d_t, float *d_X, float *d_P, float df, int N_t, int N_f, float minf)
{
int id = blockIdx.x*BLOCK_SIZE+threadIdx.x;
if ( id >= N_f) return;
__shared__ float s_t[BLOCK_SIZE];
__shared__ float s_X[BLOCK_SIZE];
// Calculate the frequency
float f = (id+1)*df + minf;
// Calculate the various sums
float XC = 0.f;
float XS = 0.f;
float CC = 0.f;
float CS = 0.f;
float XC_chunk = 0.f;
float XS_chunk = 0.f;
float CC_chunk = 0.f;
float CS_chunk = 0.f;
int j;
for(j = 0; j < N_t-BLOCK_SIZE; j += BLOCK_SIZE) {
// Load the chunk into shared memory
__syncthreads();
s_t[threadIdx.x] = d_t[j+threadIdx.x];
s_X[threadIdx.x] = d_X[j+threadIdx.x];
__syncthreads();
// Update the sums
#pragma unroll
for(int k = 0; k < BLOCK_SIZE; k++) {
// Range reduction
float ft = f*s_t[k];
ft -= rintf(ft);
float c;
float s;
__sincosf(TWOPI*ft, &s, &c);
XC_chunk += s_X[k]*c;
XS_chunk += s_X[k]*s;
CC_chunk += c*c;
CS_chunk += c*s;
}
XC += XC_chunk;
XS += XS_chunk;
CC += CC_chunk;
CS += CS_chunk;
XC_chunk = 0.f;
XS_chunk = 0.f;
CC_chunk = 0.f;
CS_chunk = 0.f;
}
// Handle the final chunk
__syncthreads();
if(j+threadIdx.x < N_t) {
s_t[threadIdx.x] = d_t[j+threadIdx.x];
s_X[threadIdx.x] = d_X[j+threadIdx.x];
}
__syncthreads();
for(int k = 0; k < N_t-j; k++) {
// Range reduction
float ft = f*s_t[k];
ft -= rintf(ft);
float c;
float s;
__sincosf(TWOPI*ft, &s, &c);
XC_chunk += s_X[k]*c;
XS_chunk += s_X[k]*s;
CC_chunk += c*c;
CS_chunk += c*s;
}
XC += XC_chunk;
XS += XS_chunk;
CC += CC_chunk;
CS += CS_chunk;
float SS = (float) N_t - CC;
// Calculate the tau terms
float ct;
float st;
__sincosf(0.5f*atan2(2.f*CS, CC-SS), &st, &ct);
// Calculate P
d_P[id] =
0.5f*((ct*XC + st*XS)*(ct*XC + st*XS)/
(ct*ct*CC + 2*ct*st*CS + st*st*SS) +
(ct*XS - st*XC)*(ct*XS - st*XC)/
(ct*ct*SS - 2*ct*st*CS + st*st*CC));
// Finish
}
__global__ void
__launch_bounds__(BLOCK_SIZE)
bootstrap_kernel(float *d_t, float *d_X, float *d_P, float df,
int N_t, int N_f, float minf, curandState *state){
// Same as culsp kernel, except that we draw an s_X value at random.
// doing this N times will give you a statistical bootstrap from which
// false alarm probabilities can be calculated. This gets rid of the Gaussian
// error assumption, but does NOT relax the assumption that all observations
// are uncorrelated (violated when you have red noise, etc.)
int id = blockIdx.x*BLOCK_SIZE+threadIdx.x;
if ( id >= N_f) return;
__shared__ float s_t[BLOCK_SIZE];
__shared__ float s_X[BLOCK_SIZE];
// Calculate the frequency
float f = (id+1)*df + minf;
// Calculate the various sums
float XC = 0.f;
float XS = 0.f;
float CC = 0.f;
float CS = 0.f;
float XC_chunk = 0.f;
float XS_chunk = 0.f;
float CC_chunk = 0.f;
float CS_chunk = 0.f;
int j, jrand;
for(j = 0; j < N_t-BLOCK_SIZE; j += BLOCK_SIZE) {
// Load the chunk into shared memory
__syncthreads();
jrand = (int) (N_t * curand_uniform(&state[id]) );
s_t[threadIdx.x] = d_t[j+threadIdx.x];
s_X[threadIdx.x] = d_X[jrand];
__syncthreads();
// Update the sums
#pragma unroll
for(int k = 0; k < BLOCK_SIZE; k++) {
// Range reduction
float ft = f*s_t[k];
ft -= rintf(ft);
float c;
float s;
__sincosf(TWOPI*ft, &s, &c);
XC_chunk += s_X[k]*c;
XS_chunk += s_X[k]*s;
CC_chunk += c*c;
CS_chunk += c*s;
}
XC += XC_chunk;
XS += XS_chunk;
CC += CC_chunk;
CS += CS_chunk;
XC_chunk = 0.f;
XS_chunk = 0.f;
CC_chunk = 0.f;
CS_chunk = 0.f;
}
// Handle the final chunk
__syncthreads();
if(j+threadIdx.x < N_t) {
jrand = (int) (N_t * curand_uniform(&state[id]));
s_t[threadIdx.x] = d_t[j+threadIdx.x];
s_X[threadIdx.x] = d_X[jrand];
}
__syncthreads();
for(int k = 0; k < N_t-j; k++) {
// Range reduction
float ft = f*s_t[k];
ft -= rintf(ft);
float c;
float s;
__sincosf(TWOPI*ft, &s, &c);
XC_chunk += s_X[k]*c;
XS_chunk += s_X[k]*s;
CC_chunk += c*c;
CS_chunk += c*s;
}
XC += XC_chunk;
XS += XS_chunk;
CC += CC_chunk;
CS += CS_chunk;
float SS = (float) N_t - CC;
// Calculate the tau terms
float ct;
float st;
__sincosf(0.5f*atan2(2.f*CS, CC-SS), &st, &ct);
// Calculate P
d_P[id] =
0.5f*((ct*XC + st*XS)*(ct*XC + st*XS)/
(ct*ct*CC + 2*ct*st*CS + st*st*SS) +
(ct*XS - st*XC)*(ct*XS - st*XC)/
(ct*ct*SS - 2*ct*st*CS + st*st*CC));
// Finish
}
#endif