-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpolynomial.py
145 lines (129 loc) · 5.15 KB
/
polynomial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
__author__ = "Juri Bieler"
__version__ = "0.0.1"
__email__ = "[email protected]"
__status__ = "Development"
# ==============================================================================
# description :n-dimensional Polynomial Model
# date :2018-07-23
# version :0.01
# notes :
# python_version :3.6
# ==============================================================================
import numpy as np
VARS = ['x', 'y', 'z']
class Polynomial:
def __init__(self, known_in, known_val):
"""
:param known_in: list of lists with input sample points
:param known_val: list of results for the known_in
"""
self._known_in = np.array(known_in)
self._known_val = np.array(known_val)
if len(self._known_in.shape) == 1:
self._known_in = self._known_in.reshape((self._known_in.shape[0], 1))
self._k = self._known_in.shape[1]
self._n = self._known_in.shape[0]
self._order = 2
def train(self):
"""
trains the surrogate if available
:return: None
"""
self.update_param(self._order)
def update_param(self, order):
"""
updates the parameters of the surrogate model
:param order: the maximum polynomial order
:return: None
"""
self._order = order
self._calc_vandermonde_mat()
self._calc_weights()
def _calc_term_count(self):
iw = 1
for o in range(1, self._order + 1):
for ik in range(0, self._k):
iw += 1
for ikc in range(0, self._k):
if ikc > ik and 2 * o < self._order + 1:
iw += 1
if ikc != ik:
for ioc in range(1, min(o, (self._order + 1) - o)):
iw += 1
return iw
def _calc_vandermonde_mat(self):
vander = np.zeros((self._n, self._calc_term_count()))
for i in range(0, self._n):
iw = 0
vander[i][iw] = 1
iw += 1
for o in range(1, self._order+1):
for ik in range(0, self._k):
vander[i][iw] = self._known_in[i][ik] ** o
iw += 1
for ikc in range(0, self._k):
if ikc > ik and 2*o < self._order+1:
vander[i][iw] = (self._known_in[i][ik] ** o) * (self._known_in[i][ikc] ** o)
iw += 1
if ikc != ik:
for ioc in range(1, min(o, (self._order+1)-o)):
vander[i][iw] = (self._known_in[i][ik] ** o) * (self._known_in[i][ikc] ** ioc)
iw += 1
# delete unused columns
for i in range(0, self._calc_term_count() - iw):
vander = np.delete(vander, -1, axis=1)
print('KICK OUT')
self._vander = vander
def _calc_weights(self):
# moore-penrose pseudo-inverse
pin_vander = np.linalg.pinv(self._vander)
weights = pin_vander @ self._known_val
self._weights = weights
def predict(self, x_pred):
"""
predicts a value from the surrogate model
:param x_pred: vector of input values
:return: result value
"""
fx = 0.
iw = 0
fx += self._weights[iw]
iw += 1
for o in range(1, self._order + 1):
for ik in range(0, self._k):
fx += self._weights[iw] * x_pred[ik] ** o
iw += 1
for ikc in range(0, self._k):
if ikc > ik and 2 * o < self._order + 1:
fx += self._weights[iw] * (x_pred[ik]**o) * (x_pred[ikc]**o)
iw += 1
if ikc != ik:
for ioc in range(1, min(o, (self._order + 1) - o)):
fx += self._weights[iw] * (x_pred[ik]**o) * (x_pred[ikc]**ioc)
iw += 1
return fx
def generate_formula(self):
str_print = ''
iw = 0
str_print += '{:f}'.format(self._weights[iw])
iw += 1
for o in range(1, self._order + 1):
for ik in range(0, self._k):
str_print += ' + {:f} * {:s}^({:d})'.format(self._weights[iw], VARS[ik], o)
iw += 1
for ikc in range(0, self._k):
if ikc > ik and 2 * o < self._order + 1:
str_print += ' + {:f} * {:s}^({:d}) * {:s}^({:d})'.format(self._weights[iw], VARS[ik], o, VARS[ikc], o)
iw += 1
if ikc != ik:
for ioc in range(1, min(o, (self._order + 1) - o)):
str_print += ' + {:f} * {:s}^({:d}) * {:s}^({:d})'.format(self._weights[iw], VARS[ik], o, VARS[ikc],
ioc)
iw += 1
str_print = str_print.replace('+ -', '- ')
print(str_print)
return str_print
def get_order(self):
return self._order
def get_weights(self):
return self._weights