-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathwdgrl.py
133 lines (105 loc) · 5.13 KB
/
wdgrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Implements WDGRL:
Wasserstein Distance Guided Representation Learning, Shen et al. (2017)
"""
import argparse
import torch
from torch import nn
from torch.autograd import grad
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor
from tqdm import tqdm, trange
import config
from data import MNISTM
from models import Net
from utils import loop_iterable, set_requires_grad, GrayscaleToRgb
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def gradient_penalty(critic, h_s, h_t):
# based on: https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py#L116
alpha = torch.rand(h_s.size(0), 1).to(device)
differences = h_t - h_s
interpolates = h_s + (alpha * differences)
interpolates = torch.stack([interpolates, h_s, h_t]).requires_grad_()
preds = critic(interpolates)
gradients = grad(preds, interpolates,
grad_outputs=torch.ones_like(preds),
retain_graph=True, create_graph=True)[0]
gradient_norm = gradients.norm(2, dim=1)
gradient_penalty = ((gradient_norm - 1)**2).mean()
return gradient_penalty
def main(args):
clf_model = Net().to(device)
clf_model.load_state_dict(torch.load(args.MODEL_FILE))
feature_extractor = clf_model.feature_extractor
discriminator = clf_model.classifier
critic = nn.Sequential(
nn.Linear(320, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 1)
).to(device)
half_batch = args.batch_size // 2
source_dataset = MNIST(config.DATA_DIR/'mnist', train=True, download=True,
transform=Compose([GrayscaleToRgb(), ToTensor()]))
source_loader = DataLoader(source_dataset, batch_size=half_batch, drop_last=True,
shuffle=True, num_workers=0, pin_memory=True)
target_dataset = MNISTM(train=False)
target_loader = DataLoader(target_dataset, batch_size=half_batch, drop_last=True,
shuffle=True, num_workers=0, pin_memory=True)
critic_optim = torch.optim.Adam(critic.parameters(), lr=1e-4)
clf_optim = torch.optim.Adam(clf_model.parameters(), lr=1e-4)
clf_criterion = nn.CrossEntropyLoss()
for epoch in range(1, args.epochs+1):
batch_iterator = zip(loop_iterable(source_loader), loop_iterable(target_loader))
total_loss = 0
total_accuracy = 0
for _ in trange(args.iterations, leave=False):
(source_x, source_y), (target_x, _) = next(batch_iterator)
# Train critic
set_requires_grad(feature_extractor, requires_grad=False)
set_requires_grad(critic, requires_grad=True)
source_x, target_x = source_x.to(device), target_x.to(device)
source_y = source_y.to(device)
with torch.no_grad():
h_s = feature_extractor(source_x).data.view(source_x.shape[0], -1)
h_t = feature_extractor(target_x).data.view(target_x.shape[0], -1)
for _ in range(args.k_critic):
gp = gradient_penalty(critic, h_s, h_t)
critic_s = critic(h_s)
critic_t = critic(h_t)
wasserstein_distance = critic_s.mean() - critic_t.mean()
critic_cost = -wasserstein_distance + args.gamma*gp
critic_optim.zero_grad()
critic_cost.backward()
critic_optim.step()
total_loss += critic_cost.item()
# Train classifier
set_requires_grad(feature_extractor, requires_grad=True)
set_requires_grad(critic, requires_grad=False)
for _ in range(args.k_clf):
source_features = feature_extractor(source_x).view(source_x.shape[0], -1)
target_features = feature_extractor(target_x).view(target_x.shape[0], -1)
source_preds = discriminator(source_features)
clf_loss = clf_criterion(source_preds, source_y)
wasserstein_distance = critic(source_features).mean() - critic(target_features).mean()
loss = clf_loss + args.wd_clf * wasserstein_distance
clf_optim.zero_grad()
loss.backward()
clf_optim.step()
mean_loss = total_loss / (args.iterations * args.k_critic)
tqdm.write(f'EPOCH {epoch:03d}: critic_loss={mean_loss:.4f}')
torch.save(clf_model.state_dict(), 'trained_models/wdgrl.pt')
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser(description='Domain adaptation using WDGRL')
arg_parser.add_argument('MODEL_FILE', help='A model in trained_models')
arg_parser.add_argument('--batch-size', type=int, default=64)
arg_parser.add_argument('--iterations', type=int, default=500)
arg_parser.add_argument('--epochs', type=int, default=5)
arg_parser.add_argument('--k-critic', type=int, default=5)
arg_parser.add_argument('--k-clf', type=int, default=1)
arg_parser.add_argument('--gamma', type=float, default=10)
arg_parser.add_argument('--wd-clf', type=float, default=1)
args = arg_parser.parse_args()
main(args)