|
| 1 | +# you can write to stdout for debugging purposes, e.g. |
| 2 | +# print("this is a debug message") |
| 3 | + |
| 4 | +# you can write to stdout for debugging purposes, e.g. |
| 5 | +# print("this is a debug message") |
| 6 | + |
| 7 | +def closest_split_pair(p_x, p_y, delta, best_pair): |
| 8 | + ln_x = len(p_x) # store length - quicker |
| 9 | + mx_x = p_x[ln_x // 2][0] # select midpoint on x-sorted array |
| 10 | + |
| 11 | + # Create a subarray of points not further than delta from |
| 12 | + # midpoint on x-sorted array |
| 13 | + |
| 14 | + s_y = [x for x in p_y if mx_x - delta <= x[0] <= mx_x + delta] |
| 15 | + |
| 16 | + best = delta # assign best value to delta |
| 17 | + ln_y = len(s_y) # store length of subarray for quickness |
| 18 | + for i in range(ln_y - 1): |
| 19 | + for j in range(i+1, min(i + 7, ln_y)): |
| 20 | + p, q = s_y[i], s_y[j] |
| 21 | + dst = dist(p, q) |
| 22 | + if dst < best: |
| 23 | + best_pair = p, q |
| 24 | + best = dst |
| 25 | + return best_pair[0], best_pair[1], best |
| 26 | + |
| 27 | +def dist(p1, p2): |
| 28 | + return max(abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
| 29 | + |
| 30 | +def brute(ax): |
| 31 | + mi = dist(ax[0], ax[1]) |
| 32 | + p1 = ax[0] |
| 33 | + p2 = ax[1] |
| 34 | + ln_ax = len(ax) |
| 35 | + if ln_ax == 2: |
| 36 | + return p1, p2, mi |
| 37 | + for i in range(ln_ax-1): |
| 38 | + for j in range(i + 1, ln_ax): |
| 39 | + if i != 0 and j != 1: |
| 40 | + d = dist(ax[i], ax[j]) |
| 41 | + if d < mi: # Update min_dist and points |
| 42 | + mi = d |
| 43 | + p1, p2 = ax[i], ax[j] |
| 44 | + return p1, p2, mi |
| 45 | + |
| 46 | +def closest_pair(ax, ay): |
| 47 | + ln_ax = len(ax) # It's quicker to assign variable |
| 48 | + if ln_ax <= 3: |
| 49 | + return brute(ax) # A call to bruteforce comparison |
| 50 | + mid = ln_ax // 2 # Division without remainder, need int |
| 51 | + Qx = ax[:mid] # Two-part split |
| 52 | + Rx = ax[mid:] |
| 53 | + |
| 54 | + # Determine midpoint on x-axis |
| 55 | + |
| 56 | + midpoint = ax[mid][0] |
| 57 | + Qy = list() |
| 58 | + Ry = list() |
| 59 | + for x in ay: # split ay into 2 arrays using midpoint |
| 60 | + if x[0] <= midpoint: |
| 61 | + Qy.append(x) |
| 62 | + else: |
| 63 | + Ry.append(x) |
| 64 | + |
| 65 | + # Call recursively both arrays after split |
| 66 | + |
| 67 | + (p1, q1, mi1) = closest_pair(Qx, Qy) |
| 68 | + (p2, q2, mi2) = closest_pair(Rx, Ry) |
| 69 | + |
| 70 | + # Determine smaller distance between points of 2 arrays |
| 71 | + |
| 72 | + if mi1 <= mi2: |
| 73 | + d = mi1 |
| 74 | + mn = (p1, q1) |
| 75 | + else: |
| 76 | + d = mi2 |
| 77 | + mn = (p2, q2) |
| 78 | + |
| 79 | + # Call function to account for points on the boundary |
| 80 | + |
| 81 | + (p3, q3, mi3) = closest_split_pair(ax, ay, d, mn) |
| 82 | + |
| 83 | + # Determine smallest distance for the array |
| 84 | + |
| 85 | + if d <= mi3: |
| 86 | + return mn[0], mn[1], d |
| 87 | + else: |
| 88 | + return p3, q3, mi3 |
| 89 | + |
| 90 | +def solution(X, Y): |
| 91 | + a = list(zip(X, Y)) |
| 92 | + ax = sorted(a, key=lambda x: x[0]) # Presorting x-wise |
| 93 | + ay = sorted(a, key=lambda x: x[1]) # Presorting y-wise |
| 94 | + (x1, y1), (x2, y2), mi = closest_pair(ax, ay) # Recursive D&C function |
| 95 | + |
| 96 | + lo = 0 |
| 97 | + high = 10 ** 5 |
| 98 | + while lo < high: |
| 99 | + mid = (lo + high + 1) // 2 |
| 100 | + if abs(x1 - x2) < 2 * mid and abs(y1 - y2) < 2 * mid: |
| 101 | + high = mid - 1 |
| 102 | + else: |
| 103 | + lo = mid |
| 104 | + return lo |
0 commit comments