-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
127 lines (105 loc) · 4.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import logging
import os
import torch
import configs
from scripts import train_hashing
logging.basicConfig(level=logging.INFO,
format='%(levelname)s %(asctime)s: %(message)s',
datefmt='%d-%m-%y %H:%M:%S')
torch.backends.cudnn.benchmark = True
configs.default_workers = os.cpu_count()
parser = argparse.ArgumentParser(description='DPN')
parser.add_argument('--nbit', default=64, type=int, help='number of bits')
parser.add_argument('--bs', default=256, type=int, help='batch size')
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--epochs', default=200, type=int, help='training epochs')
parser.add_argument('--ds', default='imagenet100', choices=['cifar10', 'cifar100', 'imagenet100', 'nuswide'], help='dataset')
parser.add_argument('--arch', default='alexnet', choices=['alexnet'], help='backbone name')
# loss related
parser.add_argument('--margin', default=1.0, type=float, help='dpn margin')
parser.add_argument('--sl', default=1.0, type=float, help='dpn loss scale')
parser.add_argument('--ce', default=0.0, type=float, help='ce loss scale')
parser.add_argument('--reg', default=0.0, type=float, help='regularization on the outputs from hash layer')
# update centroid
parser.add_argument('--centroid-update-rate', default=1.0, type=float,
help='ratio of training data to update centroid (0~1)')
parser.add_argument('--centroid-update-time', default=0, type=int,
help='number of epochs to update centroid (non-negative)')
parser.add_argument('--centroid-method', default='N', choices=['N', 'B', 'O'], help='N = sign of gaussian; '
'B = bernoulli; '
'O = optimize')
parser.add_argument('--seed', default=torch.randint(100000, size=()).item(), help='seed number; default: random')
parser.add_argument('--device', default='cuda:0')
args = parser.parse_args()
config = {
'arch': args.arch,
'arch_kwargs': {
'nbit': args.nbit,
'nclass': 0, # will be updated below
'pretrained': True,
'freeze_weight': False,
},
'batch_size': args.bs,
'dataset': args.ds,
'multiclass': args.ds == 'nuswide',
'dataset_kwargs': {
'resize': 256 if args.ds in ['imagenet100', 'nuswide'] else 224,
'crop': 224,
'norm': 2,
'evaluation_protocol': 1, # only affect cifar10
'reset': False,
'separate_multiclass': False,
},
'optim': 'sgd',
'optim_kwargs': {
'lr': args.lr,
'momentum': 0.9,
'weight_decay': 0.0005,
'nesterov': False,
'betas': (0.9, 0.999)
},
'epochs': args.epochs,
'scheduler': 'step',
'scheduler_kwargs': {
'step_size': int(args.epochs * 0.5),
'gamma': 0.1,
'milestones': '0.5,0.75'
},
'save_interval': 0,
'eval_interval': 10,
'tag': 'dpn',
'seed': args.seed,
'update_rate': args.centroid_update_rate,
'update_time': args.centroid_update_time,
'centroid_generation': args.centroid_method,
'margin': args.margin,
'sl': args.sl,
'ce': args.ce,
'reg': args.reg,
'device': args.device
}
config['arch_kwargs']['nclass'] = configs.nclass(config)
config['R'] = configs.R(config)
logdir = (f'logs/{config["arch"]}{config["arch_kwargs"]["nbit"]}_'
f'{config["dataset"]}_{config["dataset_kwargs"]["evaluation_protocol"]}_'
f'{config["epochs"]}_'
f'{config["optim_kwargs"]["lr"]}_'
f'{config["optim"]}_'
f'{config["sl"]}_{config["ce"]}')
if config['tag'] != '':
logdir += f'/{config["tag"]}_{config["seed"]}_'
else:
logdir += f'/{config["seed"]}_'
# make sure no overwrite problem
count = 0
orig_logdir = logdir
logdir = orig_logdir + f'{count:03d}'
while os.path.isdir(logdir):
count += 1
logdir = orig_logdir + f'{count:03d}'
config['logdir'] = logdir
count = 0
orig_logdir = logdir
logdir = orig_logdir + f'{count:03d}'
train_hashing.main(config)