-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathframework.py
1372 lines (1126 loc) · 50.9 KB
/
framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
General parallel computational modeling framework
John Hwang, March 2014
"""
# pylint: disable=E1101
from __future__ import division
from mpi4py import MPI
from petsc4py import PETSc
import numpy
from collections import OrderedDict
# System-level data containers
class Vec(OrderedDict):
""" A dictionary of views to the data of a PETSc Vec """
def __init__(self, system, array):
""" Accepts the containing system and the data """
super(Vec, self).__init__()
self._system = system
self.array = array
self.petsc = self._initialize()
def _initialize(self):
""" Implemented in derived classes, VarVec and ArgVec """
pass
class VarVec(Vec):
""" A system's unknown vector (contains variables) """
def _initialize(self):
""" Populates the dictionary and creates the PETSc Vec """
system = self._system
start, end = 0, 0
for var in system.variables:
if system.variables[var] is not None:
end += system.variables[var]['size']
self[var] = self.array[start:end]
start += system.variables[var]['size']
if self.array.shape[0] != end:
raise Exception('Incorrect VarVec array size')
return PETSc.Vec().createWithArray(self.array, comm=system.comm)
def __call__(self, var):
""" Determines the copy number and gets the data """
return self[self._system.get_id(var)]
class ArgVec(Vec):
""" A system's parameter vector (contains arguments) """
def _initialize(self):
""" Populates the dictionary and creates the PETSc Vec """
system = self._system
start, end = 0, 0
for subsystem in system.subsystems['local']:
for elemsystem in subsystem.subsystems['elem']:
my_args = OrderedDict()
args = elemsystem.arguments
for arg in args:
if arg not in subsystem.variables and \
arg in system.variables:
end += args[arg].shape[0]
my_args[arg] = self.array[start:end]
start += args[arg].shape[0]
self[elemsystem.name, elemsystem.copy] = my_args
if not system.subsystems['local']:
my_args = OrderedDict()
args = system.arguments
for arg in args:
if arg in system.variables:
end += args[arg].shape[0]
my_args[arg] = self.array[start:end]
start += args[arg].shape[0]
self[system.name, system.copy] = my_args
if self.array.shape[0] != end:
raise Exception('Incorrect ArgVec array size')
return PETSc.Vec().createWithArray(self.array, comm=system.comm)
def __call__(self, inp1, inp2=None):
""" Determines the copy number and gets the data """
system = self._system
if not system.subsystems['global']:
inp0 = [system.name, system.copy]
return self[system.get_id(inp0)][system.get_id(inp1)]
else:
return self[system.get_id(inp1)][system.get_id(inp2)]
# System classes
class System(object):
""" Nonlinear system base class """
def __init__(self, name, copy=0, **kwargs):
""" Called by __init__ of derived classes """
self.name = name
self.copy = copy
self.kwargs = kwargs
self.subsystems = {'global': [],
'local': [],
'elem': [],
}
if 'subsystems' in kwargs:
self.subsystems['global'] = kwargs['subsystems']
if 'req_nprocs' not in self.kwargs:
self.kwargs['req_nprocs'] = 1
for subsystem in self.subsystems['global']:
self.kwargs['req_nprocs'] += subsystem.kwargs['req_nprocs']
if 'output' not in self.kwargs:
self.output = False
else:
self.output = self.kwargs['output']
self.output_global = False
methods = {'NL': 'NEWTON',
'LN': 'KSP_PC',
'PC': 'None',
'LS': 'BK_TKG',
}
for problem in methods:
if problem not in kwargs:
kwargs[problem] = methods[problem]
tolerances = {'NL_ilimit': 10, 'NL_atol': 1e-12, 'NL_rtol': 1e-10,
'LN_ilimit': 10, 'LN_atol': 1e-12, 'LN_rtol': 1e-10,
'PC_ilimit': 10, 'PC_atol': 1e-10, 'PC_rtol': 5e-1,
'LS_ilimit': 10, 'LS_atol': 1e-10, 'LS_rtol': 9e-1,
}
for option in tolerances:
if option not in kwargs:
kwargs[option] = tolerances[option]
self.variables = OrderedDict()
self.arguments = OrderedDict()
self.comm = None
self.depth = 0
self.var_sizes = None
self.arg_sizes = None
self.vec = {'p': None, 'u': None, 'f': None,
'dp': None, 'du': None, 'df': None, 'dg': None,
'lb': None, 'ub': None, 'u0': None, 'p0': None, 'f0': None,
}
self.app_ordering = None
self.scatter_full = None
self.scatter_partial = None
self.mode = 'fwd'
self.sol_vec = None
self.rhs_vec = None
self.sol_buf = None
self.rhs_buf = None
self.solvers = {'NL': None,
'LN': None,
'LS': None,
}
def _setup_1of7_comms_assign(self):
""" Implemented in ParallelSystem and SerialSystem """
pass
def _setup_2of7_variables_declare(self):
""" Implemented in ElementarySystem, ParallelSystem & SerialSystem """
pass
def _setup_6of7_scatters_declare(self):
""" Implemented in ElementarySystem and CompoundSystem """
pass
def _setup_6of7_scatters_create(self, var_inds, arg_inds):
""" Concatenates lists of indices and creates a PETSc Scatter """
merge = lambda x: numpy.concatenate(x) if len(x) > 0 else []
var_ind_set = PETSc.IS().createGeneral(merge(var_inds), comm=self.comm)
arg_ind_set = PETSc.IS().createGeneral(merge(arg_inds), comm=self.comm)
if self.app_ordering is not None:
var_ind_set = self.app_ordering.app2petsc(var_ind_set)
return PETSc.Scatter().create(self.vec['u'].petsc, var_ind_set,
self.vec['p'].petsc, arg_ind_set)
def _setup_6of7_scatters_linspace(self, start, end):
""" Return a linspace vector of the right int type for PETSc """
return numpy.array(numpy.linspace(start, end-1, end-start), 'i')
def _nln_init(self):
""" Apply scaling and local scatter """
self.scatter('nln')
self.vec['u'].array[:] *= self.vec['u0'].array[:]
self.vec['f'].array[:] *= self.vec['f0'].array[:]
self.vec['du'].array[:] *= self.vec['u0'].array[:]
self.vec['df'].array[:] *= self.vec['f0'].array[:]
def _nln_final(self):
""" Undo scaling """
self.vec['u'].array[:] /= self.vec['u0'].array[:]
self.vec['f'].array[:] /= self.vec['f0'].array[:]
self.vec['du'].array[:] /= self.vec['u0'].array[:]
self.vec['df'].array[:] /= self.vec['f0'].array[:]
def _lin_init(self):
""" Apply scaling and local scatter """
if self.mode == 'fwd':
self.scatter('lin')
self.vec['u'].array[:] *= self.vec['u0'].array[:]
self.vec['f'].array[:] *= self.vec['f0'].array[:]
self.vec['du'].array[:] *= self.vec['u0'].array[:]
self.vec['df'].array[:] *= self.vec['f0'].array[:]
def _lin_final(self):
""" Undo scaling and local scatter """
self.vec['u'].array[:] /= self.vec['u0'].array[:]
self.vec['f'].array[:] /= self.vec['f0'].array[:]
self.vec['du'].array[:] /= self.vec['u0'].array[:]
self.vec['df'].array[:] /= self.vec['f0'].array[:]
if self.mode == 'rev':
self.scatter('lin')
def setup_1of7_comms(self, depth):
""" Receives the communicator and distributes to subsystems """
self._setup_1of7_comms_assign()
self.depth = depth
for subsystem in self.subsystems['local']:
subsystem.setup_1of7_comms(depth + 1)
def setup_2of7_variables(self):
""" Determine global variables """
for subsystem in self.subsystems['local']:
subsystem.setup_2of7_variables()
self._setup_2of7_variables_declare()
def setup_3of7_sizes(self):
""" Assembles array of variable and argument sizes """
rank, size = self.comm.rank, self.comm.size
self.var_sizes = numpy.zeros((size, len(self.variables)), int)
for var in self.variables:
if self.variables[var] is not None:
ivar = self.variables.keys().index(var)
self.var_sizes[rank, ivar] = self.variables[var]['size']
self.comm.Allgather(self.var_sizes[rank, :], self.var_sizes)
self.arg_sizes = numpy.zeros(size, int)
for subsystem in self.subsystems['local']:
for elemsystem in subsystem.subsystems['elem']:
args = elemsystem.arguments
for arg in args:
if arg not in subsystem.variables and \
arg in self.variables:
self.arg_sizes[rank] += args[arg].shape[0]
if not self.subsystems['local']:
args = self.arguments
for arg in args:
if arg in self.variables:
self.arg_sizes[rank] += args[arg].shape[0]
self.comm.Allgather(self.arg_sizes[rank], self.arg_sizes)
for subsystem in self.subsystems['local']:
subsystem.setup_3of7_sizes()
def setup_4of7_vecs(self, arrays):
""" Creates VarVecs and ArgVecs """
for vec in ['u', 'f', 'du', 'df']:
self.vec[vec] = VarVec(self, arrays[vec])
for vec in ['lb', 'ub', 'u0', 'f0']:
self.vec[vec] = VarVec(self, arrays[vec])
self.vec['dg'] = self.vec['df']
start, end = 0, 0
for subsystem in self.subsystems['local']:
end += numpy.sum(subsystem.var_sizes[subsystem.comm.rank, :])
subsystem.setup_4of7_vecs({vec: arrays[vec][start:end] for vec in
['u', 'f', 'du', 'df',
'lb', 'ub', 'u0', 'f0']})
start += numpy.sum(subsystem.var_sizes[subsystem.comm.rank, :])
arg_size = self.arg_sizes[self.comm.rank]
self.vec['p'] = ArgVec(self, numpy.zeros(arg_size))
self.vec['dp'] = ArgVec(self, numpy.zeros(arg_size))
self.vec['p0'] = ArgVec(self, numpy.zeros(arg_size))
def setup_5of7_args(self):
""" Propagates arg pointers down and up the system hierarchy """
for subsystem in self.subsystems['local']:
for elemsystem in subsystem.subsystems['elem']:
elem = elemsystem.name, elemsystem.copy
for arg in self.vec['p'][elem]:
subsystem.vec['p'][elem][arg] = self.vec['p'][elem][arg]
subsystem.vec['dp'][elem][arg] = self.vec['dp'][elem][arg]
subsystem.vec['p0'][elem][arg] = self.vec['p0'][elem][arg]
subsystem.setup_5of7_args()
for elemsystem in subsystem.subsystems['elem']:
elem = elemsystem.name, elemsystem.copy
for arg in subsystem.vec['p'][elem]:
self.vec['p'][elem][arg] = subsystem.vec['p'][elem][arg]
self.vec['dp'][elem][arg] = subsystem.vec['dp'][elem][arg]
self.vec['p0'][elem][arg] = subsystem.vec['p0'][elem][arg]
def setup_6of7_scatters(self):
""" Setup PETSc scatters """
self._setup_6of7_scatters_declare()
for subsystem in self.subsystems['local']:
subsystem.setup_6of7_scatters()
def setup_7of7_solvers(self):
""" Setup up PETSc KSP object """
size = numpy.sum(self.var_sizes[self.comm.rank, :])
zeros = numpy.zeros
self.sol_buf = PETSc.Vec().createWithArray(zeros(size), comm=self.comm)
self.rhs_buf = PETSc.Vec().createWithArray(zeros(size), comm=self.comm)
self.solvers['NL'] = {'NEWTON': Newton(self),
'NLN_JC': NonlinearJacobi(self),
'NLN_GS': NonlinearGS(self),
}
self.solvers['LN'] = {'None': Identity(self),
'KSP_PC': KSP(self),
'LIN_JC': LinearJacobi(self),
'LIN_GS': LinearGS(self),
}
self.solvers['LS'] = {'BK_TKG': Backtracking(self),
}
for subsystem in self.subsystems['local']:
subsystem.setup_7of7_solvers()
def scatter(self, vec, subsystem=None):
""" Perform partial or full scatter """
var = {'nln': 'u', 'lin': 'du'}[vec]
arg = {'nln': 'p', 'lin': 'dp'}[vec]
var_petsc = self.vec[var].petsc
arg_petsc = self.vec[arg].petsc
if subsystem == None:
scatter = self.scatter_full
else:
scatter = subsystem.scatter_partial
if not scatter == None:
self.vec[var].array[:] *= self.vec['u0'].array[:]
if self.mode == 'fwd':
scatter.scatter(var_petsc, arg_petsc, addv=False, mode=False)
elif self.mode == 'rev':
scatter.scatter(arg_petsc, var_petsc, addv=True, mode=True)
else:
raise Exception('mode type not recognized')
self.vec[var].array[:] /= self.vec['u0'].array[:]
def apply_F(self):
""" Evaluate function, (p,u) |-> f """
pass
def apply_dFdpu(self, arguments):
""" Apply Jacobian, (dp,du) |-> df [fwd] or df |-> (dp,du) [rev] """
pass
def solve_F(self):
""" Solve f for u, p |-> u """
kwargs = self.kwargs
return self.solvers['NL'][kwargs['NL']](ilimit=kwargs['NL_ilimit'],
atol=kwargs['NL_atol'],
rtol=kwargs['NL_rtol'])
def solve_dFdu(self):
""" Solve Jacobian, df |-> du [fwd] or du |-> df [rev] """
if numpy.linalg.norm(self.rhs_vec.array) < 1e-15:
self.sol_vec.array[:] = 0.0
return True
kwargs = self.kwargs
return self.solvers['LN'][kwargs['LN']](ilimit=kwargs['LN_ilimit'],
atol=kwargs['LN_atol'],
rtol=kwargs['LN_rtol'])
def solve_precon(self):
""" Apply preconditioner """
kwargs = self.kwargs
self.solvers['LN'][kwargs['PC']](ilimit=kwargs['PC_ilimit'],
atol=kwargs['PC_atol'],
rtol=kwargs['PC_rtol'],
space=' PC')
def solve_line_search(self):
""" Apply line search """
kwargs = self.kwargs
self.solvers['LS'][kwargs['LS']](ilimit=kwargs['LS_ilimit'],
atol=kwargs['LS_atol'],
rtol=kwargs['LS_rtol'])
def linearize(self):
""" Instruction to pre-compute/assemble/factorize Jacobian """
for subsystem in self.subsystems['local']:
subsystem.linearize()
def get_id(self, inp):
""" Return name, copy even when copy not specified """
if not (isinstance(inp, list) or isinstance(inp, tuple)):
return inp, self.copy #0
elif len(inp) == 1:
return inp[0], self.copy #0
elif inp[1] == -1:
return inp[0], self.copy
else:
return inp[0], inp[1]
def set_mode(self, mode, output=None):
""" Set to fwd or rev mode """
self.mode = mode
self.sol_vec = self.vec[{'fwd': 'du', 'rev': 'df'}[mode]]
self.rhs_vec = self.vec[{'fwd': 'df', 'rev': 'du'}[mode]]
if output is not None:
self.output_global = output
for subsystem in self.subsystems['local']:
subsystem.set_mode(mode, output)
def setup(self, comm=MPI.COMM_WORLD):
""" Top-level setup/initialization method called by user """
self.comm = comm
self.setup_1of7_comms(0)
self.setup_2of7_variables()
self.setup_3of7_sizes()
size = numpy.sum(self.var_sizes[self.comm.rank, :])
self.setup_4of7_vecs({vec: numpy.zeros(size) for vec in
['u', 'f', 'du', 'df',
'lb', 'ub', 'u0', 'f0']})
self.setup_5of7_args()
self.setup_6of7_scatters()
self.setup_7of7_solvers()
self.set_mode('fwd')
for var in self.variables:
variable = self.variables[var]
if variable is not None:
for vec in ['u', 'lb', 'ub', 'u0', 'f0']:
self.vec[vec][var][:] = variable[vec]
self.vec['u'][var][:] /= variable['u0']
self.vec['lb'][var][:] /= variable['u0']
self.vec['ub'][var][:] /= variable['u0']
for elemsystem in self.subsystems['elem']:
sys = elemsystem.name, elemsystem.copy
for arg in self.vec['p0'][sys]:
if self.variables[arg] is not None:
self.vec['p0'][sys][arg][:] = \
numpy.average(self.variables[arg]['u0'])
else:
self.vec['p0'][sys][arg][:] = 1.0
self.local_initialize()
return self
def local_initialize(self):
""" Optional method for elemsystems after framework has initialized """
for subsystem in self.subsystems['local']:
subsystem.local_initialize()
def form_system(self):
print '>>> LINEAR SYSTEM >>>', self.name
n = self.vec['u'].array.shape[0]
jac = numpy.zeros((n,n+2))
jac[:,-1] = self.rhs_buf.array[:]
jac[:,-2] = self.sol_vec.array[:]
for i in xrange(n):
self.sol_vec.array[:] = 0.0
self.sol_vec.array[i] = 1.0
self.apply_dFdpu(self.variables.keys())
jac[:,i] = self.rhs_vec.array[:]
for i in xrange(8):
if self.name == 'mission':
k = i + 44
else:
k = i + 36
for j in xrange(8):
if self.name == 'mission':
l = j + 44
else:
l = j + 36
print '%6.2f'%(jac[k,l]),
print ' | ',
print '%6.2f'%(jac[k,l+1]),
print ' | ',
print ' = ',
print ' | ',
print '%6.2f'%(jac[k,l+2]),
print
print '-------------------------'
print
self.sol_vec.array[:] = jac[:,-2]
def set_initial_var_values(self):
for var in self.variables:
self.vec['u'][var][:] = self.variables[var]['u']
def compute(self, output=False):
""" Solves system """
self.set_mode('fwd', output)
success = self.solve_F()
if not success:
self.set_initial_var_values()
self.linearize()
return self.vec['u'], success
def compute_derivatives(self, mode, var, ind=0, output=False):
""" Solves derivatives of system (direct/adjoint) """
self.set_mode(mode, output)
self.rhs_vec.array[:] = 0.0
for elemsystem in self.subsystems['elem']:
sys = elemsystem.name, elemsystem.copy
for arg in self.vec['dp'][sys]:
if self.variables[arg] is not None:
self.vec['dp'][sys][arg][:] = 0.0
self.rhs_vec.array[:] = 0.0
ivar = self.variables.keys().index(self.get_id(var))
ind += numpy.sum(self.var_sizes[:, :ivar])
ind_set = PETSc.IS().createGeneral([ind], comm=self.comm)
if self.app_ordering is not None:
ind_set = self.app_ordering.app2petsc(ind_set)
ind = ind_set.indices[0]
self.rhs_vec.petsc.setValue(ind, 1.0, addv=False)
success = self.solve_dFdu()
if not success:
self.sol_vec.array[:] = 0.0
return self.sol_vec, success
def check_derivatives_all(self, print_jac=[None, None], elemsys_ids=None):
self.compute(output=False)
if elemsys_ids is None:
elemsystems = self.subsystems['elem']
else:
elemsys_ids = [self.get_id(sys_id)
for sys_id in elemsys_ids]
elemsystems = [sys for sys in self.subsystems['elem']
if (sys.name, sys.copy) in elemsys_ids]
norm = numpy.linalg.norm
for elemsystem in elemsystems:
for var in elemsystem.variables.keys():
nvar = self.variables[var]['size']
for arg in elemsystem.arguments.keys() + [var]:
narg = self.variables[arg]['size']
if var == arg:
narg = elemsystem.vec['u'](arg).shape[0]
else:
narg = elemsystem.vec['p'](arg).shape[0]
FDD = {ind: numpy.zeros((nvar, narg))
for ind in [-1,-3,-5,-7,-9]}
fwd = numpy.zeros((nvar, narg))
rev = numpy.zeros((nvar, narg))
elemsystem.set_mode('fwd', False)
elemsystem.apply_F()
f = elemsystem.vec['f'](var)
f0 = numpy.array(f)
for col in xrange(narg):
for ind in FDD.keys():
h = 10**ind
if var == arg:
elemsystem.vec['u'](arg)[col] += h
else:
elemsystem.vec['p'](arg)[col] += h
elemsystem.apply_F()
FDD[ind][:, col] = (f-f0) / h
if var == arg:
elemsystem.vec['u'](arg)[col] -= h
else:
elemsystem.vec['p'](arg)[col] -= h
elemsystem.set_mode('fwd', False)
if var == arg:
elemsystem.vec['du'](arg)[:] = 0.0
else:
elemsystem.vec['dp'](arg)[:] = 0.0
for col in xrange(narg):
if var == arg:
elemsystem.vec['du'](arg)[col] = 1.0
else:
elemsystem.vec['dp'](arg)[col] = 1.0
elemsystem.apply_dFdpu([arg])
fwd[:, col] = elemsystem.vec['df'](var)
if var == arg:
elemsystem.vec['du'](arg)[col] = 0.0
else:
elemsystem.vec['dp'](arg)[col] = 0.0
elemsystem.set_mode('rev', False)
elemsystem.vec['df'].array[:] = 0.0
for col in xrange(nvar):
elemsystem.vec['df'](var)[col] = 1.0
elemsystem.apply_dFdpu([arg])
if var == arg:
rev[col, :] = elemsystem.vec['du'](arg)
else:
rev[col, :] = elemsystem.vec['dp'](arg)
elemsystem.vec['df'](var)[col] = 0.0
min_fwd = min([norm(fwd-FDD[ind], numpy.inf)
for ind in FDD.keys()])
min_rev = min([norm(rev-FDD[ind], numpy.inf)
for ind in FDD.keys()])
min_anl = norm(fwd-rev, numpy.inf)
if var[0]==print_jac[0] and arg[0]==print_jac[1]:
print 'fwd'
print numpy.around(fwd[:8,8:16], 5)
print 'rev'
print numpy.around(rev[:8,8:16], 5)
print 'FD'
print numpy.around(FDD[-5][:8,8:16], 5)
import scipy.sparse
print scipy.sparse.csr_matrix(fwd)
print scipy.sparse.csr_matrix(rev)
print scipy.sparse.csr_matrix(FDD[-5])
print ('%13s %13s %17.10e %17.10e %17.10e %17.10e %5s') % \
(var[0], arg[0], min_fwd, min_rev, min_anl, norm(fwd),
'. ' if min_fwd + min_rev + min_anl < 1e-4 else 'X <<<')
def print_solution(self, dat='u', length=14):
""" Print min, average, and max of all variables """
print 'Printing solution:', dat
for var in self.variables:
name, copy = var
var_min = numpy.min(self.vec[dat][var])
var_avg = numpy.average(self.vec[dat][var])
var_max = numpy.max(self.vec[dat][var])
print ('%' + str(length) + 's %4i %17.10e %17.10e %17.10e') % \
(name, copy, var_min, var_avg, var_max)
class ElementarySystem(System):
""" Nonlinear system with no subsystems """
def __call__(self, inp):
""" Return self if requested name and copy match """
if self.get_id(inp) == (self.name, self.copy):
return self
else:
return None
def _setup_2of7_variables_declare(self):
""" Calls user's method that declares variables and elemsystems """
self._declare()
self.subsystems['elem'] = [self]
def _declare(self):
""" Must be implemented by the user """
raise Exception('This method must be implemented')
def _declare_variable(self, inp, size=1, val=1.0, lower=None, upper=None,
u_scal=1.0, f_scal=1.0):
""" Adds a variable owned by the current ElementarySystem """
var = self.get_id(inp)
self.variables[var] = {'size': size,
'u': val,
'lb': lower,
'ub': upper,
'u0': numpy.abs(u_scal),
'f0': numpy.abs(f_scal),
}
def _declare_argument(self, inp, indices=numpy.zeros(1)):
""" Adds an argument for the current ElementarySystem """
arg = self.get_id(inp)
self.arguments[arg] = numpy.array(indices, 'i')
def _setup_6of7_scatters_declare(self):
""" Defines a scatter for args within an ElementarySystem """
args = self.arguments
start = numpy.sum(self.arg_sizes[:self.comm.rank])
end = numpy.sum(self.arg_sizes[:self.comm.rank+1])
arg_inds = [self._setup_6of7_scatters_linspace(start, end)]
var_inds = []
for arg in args:
if arg in self.variables:
ivar = self.variables.keys().index(arg)
var_inds.append(numpy.sum(self.var_sizes[:, :ivar]) + args[arg])
self.scatter_full = self._setup_6of7_scatters_create(var_inds, arg_inds)
def _apply_dFdpu_FD(self, arguments):
""" Finite difference directional derivative implementation """
if self.mode == 'rev':
raise Exception('Not implemented error')
else:
step = 1e-3
vec = self.vec
sys = self.name, self.copy
self.scatter('lin')
self.scatter('nln')
self.apply_F()
vec['df'].array[:] = -vec['f'].array
for var in self.variables:
if var in arguments:
vec['u'][var][:] += step * vec['du'][var]
for sys in vec['p']:
for arg in vec['p'][sys]:
if arg in arguments:
vec['p'][sys][arg][:] += vec['dp'][sys][arg][:] * step
self.apply_F()
for var in self.variables:
if var in arguments:
vec['u'][var][:] -= step * vec['du'][var]
for sys in vec['p']:
for arg in vec['p'][sys]:
if arg in arguments:
vec['p'][sys][arg][:] -= vec['dp'][sys][arg][:] * step
vec['df'].array[:] += vec['f'].array
vec['df'].array[:] /= step
def apply_dFdpu(self, arguments):
""" Finite difference directional derivative """
self._apply_dFdpu_FD(arguments)
class ImplicitSystem(ElementarySystem):
""" All variables are implicitly defined by v_i : C_i(v) = 0 """
pass
class ExplicitSystem(ElementarySystem):
""" All variables are explicitly defined by v_i : V_i(v_{j!=i}) """
def apply_F(self):
""" F_i(p_i,u_i) = u_i - G_i(p_i) = 0 """
vec = self.vec
vec['f'].array[:] = vec['u'].array[:]
self._nln_init()
self.apply_G()
self._nln_final()
vec['f'].array[:] -= vec['u'].array[:]
vec['u'].array[:] += vec['f'].array[:]
def apply_dFdpu(self, arguments):
""" df = du - dGdp * dp or du = df and dp = -dGdp^T * df """
vec = self.vec
self._lin_init()
if self.mode == 'fwd':
vec['df'].array[:] = 0.0
self.apply_dGdp(arguments)
vec['df'].array[:] *= -1.0
for var in self.variables:
if var in arguments:
vec['df'][var][:] += vec['du'][var][:]
elif self.mode == 'rev':
vec['df'].array[:] *= -1.0
self.apply_dGdp(arguments)
vec['df'].array[:] *= -1.0
vec['du'].array[:] = 0.0
for var in self.variables:
if var in arguments:
vec['du'][var][:] += vec['df'][var][:]
self._lin_final()
def solve_F(self):
""" v_i = V_i(v_{j!=i}) """
self.scatter('nln')
self.apply_G()
def solve_dFdu(self):
""" Inverse of the identity matrix """
vec = self.vec
if self.mode == 'fwd':
for var in self.variables:
vec['du'][var][:] = vec['df'][var][:]
elif self.mode == 'rev':
for var in self.variables:
vec['df'][var][:] = vec['du'][var][:]
def apply_G(self):
""" Must be implemented by user """
pass
def apply_dGdp(self, arguments):
""" Optionally implemented by user """
pass
class IndVar(ExplicitSystem):
""" Variables given by v_i = v_i^* """
def __init__(self, name, copy=0, val=0, size=1, **kwargs):
""" Enables one-line definition of independent variables """
self.value = val
if isinstance(self.value, numpy.ndarray):
self.size = self.value.shape[0]
elif isinstance(self.value, list):
self.size = len(self.value)
else:
self.size = size
super(IndVar, self).__init__(name, copy, **kwargs)
if 'u_scal' in self.kwargs:
self.u_scal = self.kwargs['u_scal']
else:
self.u_scal = 1.0
if 'f_scal' in self.kwargs:
self.f_scal = self.kwargs['f_scal']
else:
self.f_scal = 1.0
def _declare(self):
""" Declares the variable """
self._declare_variable([self.name, self.copy],
size=self.size, val=self.value,
u_scal=self.u_scal, f_scal=self.f_scal)
def apply_G(self):
""" Set u to value """
self.vec['u'][self.name, self.copy][:] = self.value
def apply_dGdp(self, arguments):
""" Set to zero """
if self.mode == 'fwd':
self.vec['dg'][self.name, self.copy][:] = 0.0
class CompoundSystem(System):
""" Nonlinear system that has subsystems """
def __call__(self, inp):
""" Return instance if found else None """
if self.get_id(inp) == (self.name, self.copy):
return self
else:
for subsystem in self.subsystems['global']:
result = subsystem(inp)
if result is not None:
return result
return None
def _setup_6of7_scatters_declare(self):
""" Defines a scatter for args at this system's level """
var_sizes = self.var_sizes
arg_sizes = self.arg_sizes
iproc = self.comm.rank
linspace = self._setup_6of7_scatters_linspace
create = self._setup_6of7_scatters_create
app_indices = []
for ivar in xrange(len(self.variables)):
start = numpy.sum(var_sizes[:, :ivar]) + \
numpy.sum(var_sizes[:iproc, ivar])
end = start + var_sizes[iproc, ivar]
app_indices.append(linspace(start, end))
app_indices = numpy.concatenate(app_indices)
start = numpy.sum(var_sizes[:iproc, :])
end = numpy.sum(var_sizes[:iproc+1, :])
petsc_indices = linspace(start, end)
app_ind_set = PETSc.IS().createGeneral(app_indices, comm=self.comm)
petsc_ind_set = PETSc.IS().createGeneral(petsc_indices, comm=self.comm)
self.app_ordering = PETSc.AO().createBasic(app_ind_set, petsc_ind_set,
comm=self.comm)
var_full = []
arg_full = []
start, end = numpy.sum(arg_sizes[:iproc]), numpy.sum(arg_sizes[:iproc])
for subsystem in self.subsystems['global']:
var_partial = []
arg_partial = []
for elemsystem in subsystem.subsystems['elem']:
args = elemsystem.arguments
for arg in args:
if arg not in subsystem.variables and \
arg in self.variables:
ivar = self.variables.keys().index(arg)
var_inds = numpy.sum(var_sizes[:, :ivar]) + args[arg]
end += args[arg].shape[0]
arg_inds = linspace(start, end)
start += args[arg].shape[0]
var_partial.append(var_inds)
arg_partial.append(arg_inds)
var_full.append(var_inds)
arg_full.append(arg_inds)
subsystem.scatter_partial = create(var_partial, arg_partial)
self.scatter_full = create(var_full, arg_full)
def apply_F(self):
""" Delegate to subsystems """
self.scatter('nln')
for subsystem in self.subsystems['local']:
subsystem.apply_F()
def apply_dFdpu(self, arguments):
""" Delegate to subsystems """
if self.mode == 'fwd':
self.scatter('lin')
for subsystem in self.subsystems['local']:
subsystem.apply_dFdpu(arguments)
if self.mode == 'rev':
self.scatter('lin')
class ParallelSystem(CompoundSystem):
""" Distributes procs to subsystems in parallel """
def _setup_1of7_comms_assign(self):
""" Splits the comm """
subsystems = self.subsystems['global']
rank, size = self.comm.rank, self.comm.size
nsubs = len(subsystems)
if nsubs > size:
raise Exception("Not enough procs to split comm")
num_procs = numpy.ones(nsubs, int)
pctg_procs = numpy.zeros(nsubs)
req_pctg = [subsystem.kwargs['req_nprocs'] for subsystem in subsystems]
req_pctg = numpy.array(req_pctg, float) / numpy.sum(req_pctg)
for i in xrange(size - nsubs):
pctg_procs[:] = num_procs / numpy.sum(num_procs)
num_procs[numpy.argmax(req_pctg - pctg_procs)] += 1
color = numpy.zeros(size, int)
start, end = 0, 0
for i in xrange(nsubs):
end += num_procs[i]
color[start:end] = i
start += num_procs[i]
subcomm = self.comm.Split(color[rank])
self.subsystems['local'] = [subsystems[color[rank]]]
for subsystem in self.subsystems['local']:
subsystem.comm = subcomm
def _setup_2of7_variables_declare(self):
""" Determine variables and elem subsystems from local subsystems """
subsystem = self.subsystems['local'][0]
varkeys_list = self.comm.allgather(subsystem.variables.keys())
for varkeys in varkeys_list:
for var in varkeys:
self.variables[var] = None
for var in subsystem.variables:
self.variables[var] = subsystem.variables[var]
self.subsystems['elem'] = subsystem.subsystems['elem']
class SerialSystem(CompoundSystem):
""" All subsystems given all procs """
def _setup_1of7_comms_assign(self):
""" Passes comm to all subsystems """
self.subsystems['local'] = self.subsystems['global']
for subsystem in self.subsystems['local']:
subsystem.comm = self.comm
def _setup_2of7_variables_declare(self):
""" Determine variables and elem subsystems from subsystems """
for subsystem in self.subsystems['global']:
for var in subsystem.variables:
self.variables[var] = subsystem.variables[var]
self.subsystems['elem'].extend(subsystem.subsystems['elem'])
# Classes for solver collections