-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjitter.r
72 lines (55 loc) · 2.44 KB
/
jitter.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
require(data.table)
require(Rcpp)
require(ggplot2)
nextTime = function(n, rateParameter) {
return(sapply(1:n,function(i) -log(1.0 - runif(1)) / rateParameter))
}
# Randomly calculate message interarrivals using Poisson processes
messages = data.table("Interarrival" = nextTime(1000,1/10))
# Sum up interarrivals to get timestamps for each message
messages[,Timestamp:=cumsum(Interarrival)]
# Assigning each message a constant service time. You could use a distribution here
serviceTime=5
messages[,serviceTime := serviceTime]
# Lets randomly increase the service time for some of the messages to simulate jitter
messages[runif(n=10, min=0, max=.N),serviceTime := runif(n=.N, min=90, max=100)]
messages[,responseTime := calculateResponseTime(Timestamp, serviceTime)]
ggplot(messages, aes(x=Timestamp, y=responseTime))+
geom_point(color="cornflowerblue")+
gtheme()+
ylab("Response Time")+
scale_y_continuous(breaks=number_ticks(10), limits=c(0,150))
ggplot(messages, aes(x=responseTime))+
stat_ecdf(color="cornflowerblue")+
gtheme()+
ylab("Percentile")+
xlab("Response Time")+
scale_y_continuous(breaks=number_ticks(10))+
scale_x_continuous(breaks=number_ticks(10))
# Calculate the latency difference between each message
messages[order(Timestamp), latencyDiff:=c(0,diff(responseTime))]
ggplot(messages[latencyDiff>0], aes(x=latencyDiff)) +
stat_ecdf()+
gtheme()+
coord_cartesian(ylim=c(0.8,1))+
ylab("Percentile")+
xlab("Latency Delta")+
scale_y_continuous(breaks=number_ticks(10))+
scale_x_continuous(breaks=number_ticks(10))
# Identify all messages having "high" latency
messages[,highLatency := responseTime > 25]
# Identify contiguous sets of high latency messages using a run length encoding (see data.table ?rleid)
messages[,burstIdx := rleid(highLatency)]
# Mark messages which participated in a burst that contained an abnormal latencyDiff (service time).
# Max latency diff should in theory be the service time, given two messages arriving at exactly the same time
messages[,`Caused by Jitter` := max(latencyDiff, na.rm=T) > serviceTime,by=burstIdx]
ggplot(messages, aes(x=responseTime, color=`Caused by Jitter`)) +
stat_ecdf()+
gtheme()+
ylab("Percentile")+
xlab("Response Time")+
scale_y_continuous(breaks=number_ticks(10))+
scale_x_continuous(breaks=number_ticks(10))+
scale_color_manual(values=c('cornflowerblue', 'green4'))
#filter to only high latency messages
highLatencyMessages = messages[highLatency == TRUE]