File tree Expand file tree Collapse file tree 3 files changed +55
-0
lines changed
tools/checkpoint_conversion Expand file tree Collapse file tree 3 files changed +55
-0
lines changed Original file line number Diff line number Diff line change 181181 },
182182 "kaggle_handle" : "kaggle://keras/gemma3/keras/gemma3_instruct_270m/4" ,
183183 },
184+ "medgemma_instruct_4b" : {
185+ "metadata" : {
186+ "description" : (
187+ "A 4 billion parameter model based on Gemma 3. "
188+ "This model is trained for performance on medical text"
189+ "and image comprehension and is optimized for medical"
190+ "applications that involve a text generation component."
191+ ),
192+ "params" : 4300079472 ,
193+ "path" : "gemma3" ,
194+ },
195+ "kaggle_handle" : "kaggle://keras/medgemma/keras/medgemma_instruct_4b/1" ,
196+ },
197+ "medgemma_instruct_27b" : {
198+ "metadata" : {
199+ "description" : (
200+ "A 27 billion parameter model based on Gemma 3. "
201+ "This model trained for performance on medical text "
202+ "and image comprehension and is optimized for medical "
203+ "applications that involve a text generation component."
204+ ),
205+ "params" : 27432406640 ,
206+ "path" : "gemma3" ,
207+ },
208+ "kaggle_handle" : "kaggle://keras/medgemma/keras/medgemma_instruct_27b/1" ,
209+ },
210+ "medgemma_instruct_27b_text" : {
211+ "metadata" : {
212+ "description" : (
213+ "A 27 billion parameter text-only model based on Gemma 3. "
214+ "This model is trained for performance on medical text "
215+ "comprehension and is optimized for medical applications "
216+ "that involve a text generation component."
217+ ),
218+ "params" : 27009002240 ,
219+ "path" : "gemma3" ,
220+ },
221+ "kaggle_handle" : "kaggle://keras/medgemma/keras/medgemma_instruct_27b_text/1" ,
222+ },
184223}
Original file line number Diff line number Diff line change 321321 },
322322 "kaggle_handle" : "kaggle://keras/siglip/keras/siglip2_so400m_patch16_512/1" ,
323323 },
324+ "medsiglip_900m_448" : {
325+ "metadata" : {
326+ "description" : (
327+ "A 900 million parameter variant of SigLIP trained to encode "
328+ "medical images and text into a common embedding space. "
329+ "MedSigLIP contains a vision encoder and a text encoder, and "
330+ "supports 448x448 image resolution with up to 64 text tokens."
331+ ),
332+ "params" : 878301426 ,
333+ "official_name" : "SigLIP2" ,
334+ "path" : "siglip" ,
335+ "model_card" : "https://huggingface.co/google/medsiglip-448#medsiglip-model-card" ,
336+ },
337+ "kaggle_handle" : "kaggle://keras/medsiglip/keras/medsiglip_900m_448/1" ,
338+ },
324339}
Original file line number Diff line number Diff line change 110110 "siglip2_so400m_patch16_256" : "google/siglip2-so400m-patch16-256" ,
111111 "siglip2_so400m_patch16_384" : "google/siglip2-so400m-patch16-384" ,
112112 "siglip2_so400m_patch16_512" : "google/siglip2-so400m-patch16-512" ,
113+ "medsiglip_900m_448" : "google/medsiglip-448" ,
113114}
114115
115116flags .DEFINE_string (
You can’t perform that action at this time.
0 commit comments