|
| 1 | +import copy |
| 2 | + |
| 3 | +from keras.src import dtype_policies |
| 4 | +from keras.src import layers |
| 5 | +from keras.src import ops |
| 6 | +from keras.src import quantizers |
| 7 | +from keras.src.api_export import keras_export |
| 8 | +from keras.src.backend import KerasTensor |
| 9 | + |
| 10 | + |
| 11 | +@keras_export("keras.layers.ReversibleEmbedding") |
| 12 | +class ReversibleEmbedding(layers.Embedding): |
| 13 | + """An embedding layer which can project backwards to the input dim. |
| 14 | +
|
| 15 | + This layer is an extension of `keras.layers.Embedding` for language models. |
| 16 | + This layer can be called "in reverse" with `reverse=True`, in which case the |
| 17 | + layer will linearly project from `output_dim` back to `input_dim`. |
| 18 | +
|
| 19 | + By default, the reverse projection will use the transpose of the |
| 20 | + `embeddings` weights to project to `input_dim` (weights are "tied"). If |
| 21 | + `tie_weights=False`, the model will use a separate, trainable variable for |
| 22 | + reverse projection. |
| 23 | +
|
| 24 | + This layer has no bias terms. |
| 25 | +
|
| 26 | + Args: |
| 27 | + input_dim: Integer. Size of the vocabulary, |
| 28 | + i.e. maximum integer index + 1. |
| 29 | + output_dim: Integer. Dimension of the dense embedding. |
| 30 | + tie_weights: Boolean, whether or not the matrix for embedding and |
| 31 | + the matrix for the `reverse` projection should share the same |
| 32 | + weights. |
| 33 | + embeddings_initializer: Initializer for the `embeddings` |
| 34 | + matrix (see `keras.initializers`). |
| 35 | + embeddings_regularizer: Regularizer function applied to |
| 36 | + the `embeddings` matrix (see `keras.regularizers`). |
| 37 | + embeddings_constraint: Constraint function applied to |
| 38 | + the `embeddings` matrix (see `keras.constraints`). |
| 39 | + mask_zero: Boolean, whether or not the input value 0 is a special |
| 40 | + "padding" value that should be masked out. |
| 41 | + reverse_dtype: The dtype for the reverse projection computation. |
| 42 | + Defaults to the `compute_dtype` of the layer. |
| 43 | + logit_soft_cap: If `logit_soft_cap` is set and `reverse=True`, the |
| 44 | + output logits will be scaled by |
| 45 | + `tanh(logits / logit_soft_cap) * logit_soft_cap`. This narrows the |
| 46 | + range of output logits and can improve training. |
| 47 | + **kwargs: other keyword arguments passed to `keras.layers.Embedding`, |
| 48 | + including `name`, `trainable`, `dtype` etc. |
| 49 | +
|
| 50 | + Call arguments: |
| 51 | + inputs: The tensor inputs to the layer. |
| 52 | + reverse: Boolean. If `True` the layer will perform a linear projection |
| 53 | + from `output_dim` to `input_dim`, instead of a normal embedding |
| 54 | + call. Default to `False`. |
| 55 | +
|
| 56 | + Example: |
| 57 | + ```python |
| 58 | + batch_size = 16 |
| 59 | + vocab_size = 100 |
| 60 | + hidden_dim = 32 |
| 61 | + seq_length = 50 |
| 62 | +
|
| 63 | + # Generate random inputs. |
| 64 | + token_ids = np.random.randint(vocab_size, size=(batch_size, seq_length)) |
| 65 | +
|
| 66 | + embedding = keras.layers.ReversibleEmbedding(vocab_size, hidden_dim) |
| 67 | + # Embed tokens to shape `(batch_size, seq_length, hidden_dim)`. |
| 68 | + hidden_states = embedding(token_ids) |
| 69 | + # Project hidden states to shape `(batch_size, seq_length, vocab_size)`. |
| 70 | + logits = embedding(hidden_states, reverse=True) |
| 71 | + ``` |
| 72 | +
|
| 73 | + References: |
| 74 | + - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762) |
| 75 | + - [Press and Wolf, 2016](https://arxiv.org/abs/1608.05859) |
| 76 | + """ |
| 77 | + |
| 78 | + def __init__( |
| 79 | + self, |
| 80 | + input_dim, |
| 81 | + output_dim, |
| 82 | + tie_weights=True, |
| 83 | + embeddings_initializer="uniform", |
| 84 | + embeddings_regularizer=None, |
| 85 | + embeddings_constraint=None, |
| 86 | + mask_zero=False, |
| 87 | + reverse_dtype=None, |
| 88 | + logit_soft_cap=None, |
| 89 | + **kwargs, |
| 90 | + ): |
| 91 | + super().__init__( |
| 92 | + input_dim, |
| 93 | + output_dim, |
| 94 | + embeddings_initializer=embeddings_initializer, |
| 95 | + embeddings_regularizer=embeddings_regularizer, |
| 96 | + embeddings_constraint=embeddings_constraint, |
| 97 | + mask_zero=mask_zero, |
| 98 | + **kwargs, |
| 99 | + ) |
| 100 | + self.tie_weights = tie_weights |
| 101 | + self.reverse_dtype = reverse_dtype |
| 102 | + self.logit_soft_cap = logit_soft_cap |
| 103 | + |
| 104 | + def build(self, inputs_shape=None): |
| 105 | + super().build(inputs_shape) |
| 106 | + if not self.tie_weights and self.quantization_mode not in ( |
| 107 | + "int8", |
| 108 | + "int4", |
| 109 | + ): |
| 110 | + self.reverse_embeddings = self.add_weight( |
| 111 | + shape=(self.output_dim, self.input_dim), |
| 112 | + initializer=self.embeddings_initializer, |
| 113 | + name="reverse_embeddings", |
| 114 | + trainable=True, |
| 115 | + ) |
| 116 | + |
| 117 | + def call(self, inputs, reverse=False): |
| 118 | + if not reverse: |
| 119 | + return super().call(inputs) |
| 120 | + else: |
| 121 | + if self.tie_weights: |
| 122 | + kernel = ops.transpose(ops.convert_to_tensor(self.embeddings)) |
| 123 | + else: |
| 124 | + kernel = self.reverse_embeddings |
| 125 | + if self.reverse_dtype is not None: |
| 126 | + inputs = ops.cast(inputs, self.reverse_dtype) |
| 127 | + kernel = ops.cast(kernel, self.reverse_dtype) |
| 128 | + logits = ops.matmul(inputs, kernel) |
| 129 | + # Optionally soft-cap logits. |
| 130 | + if self.logit_soft_cap is not None: |
| 131 | + soft_cap = self.logit_soft_cap |
| 132 | + logits = ops.multiply( |
| 133 | + ops.tanh(ops.divide(logits, soft_cap)), soft_cap |
| 134 | + ) |
| 135 | + return logits |
| 136 | + |
| 137 | + def compute_output_shape(self, input_shape, reverse=False): |
| 138 | + output_shape = list(input_shape) |
| 139 | + if reverse: |
| 140 | + output_shape[-1] = self.input_dim |
| 141 | + else: |
| 142 | + output_shape += [self.output_dim] |
| 143 | + return output_shape |
| 144 | + |
| 145 | + def compute_output_spec(self, inputs, reverse=False): |
| 146 | + output_shape = list(inputs.shape) |
| 147 | + if reverse: |
| 148 | + output_shape[-1] = self.input_dim |
| 149 | + else: |
| 150 | + output_shape += [self.output_dim] |
| 151 | + return KerasTensor(output_shape, dtype=self.compute_dtype) |
| 152 | + |
| 153 | + def get_config(self): |
| 154 | + config = super().get_config() |
| 155 | + config.update( |
| 156 | + { |
| 157 | + "tie_weights": self.tie_weights, |
| 158 | + "reverse_dtype": self.reverse_dtype, |
| 159 | + "logit_soft_cap": self.logit_soft_cap, |
| 160 | + } |
| 161 | + ) |
| 162 | + return config |
| 163 | + |
| 164 | + @property |
| 165 | + def variable_serialization_spec(self): |
| 166 | + # Avoid modifying the parent's spec. |
| 167 | + _spec = copy.deepcopy(super().variable_serialization_spec) |
| 168 | + if not self.tie_weights: |
| 169 | + for mode, variable_spec in _spec.items(): |
| 170 | + variable_spec.append("reverse_embeddings") |
| 171 | + if mode in ("int4", "int8"): |
| 172 | + variable_spec.append("reverse_embeddings_scale") |
| 173 | + return _spec |
| 174 | + |
| 175 | + def quantized_build(self, embeddings_shape, mode): |
| 176 | + if mode == "int8": |
| 177 | + self._int8_build(embeddings_shape) |
| 178 | + elif mode == "int4": |
| 179 | + self._int4_build(embeddings_shape) |
| 180 | + else: |
| 181 | + raise self._quantization_mode_error(mode) |
| 182 | + self._is_quantized = True |
| 183 | + |
| 184 | + def _int8_build(self, embeddings_shape): |
| 185 | + if embeddings_shape is None: |
| 186 | + embeddings_shape = (self.input_dim, self.output_dim) |
| 187 | + super()._int8_build(embeddings_shape=embeddings_shape) |
| 188 | + self.inputs_quantizer = quantizers.AbsMaxQuantizer(axis=-1) |
| 189 | + if not self.tie_weights: |
| 190 | + self.reverse_embeddings = self.add_weight( |
| 191 | + name="reverse_embeddings", |
| 192 | + shape=(self.output_dim, self.input_dim), |
| 193 | + initializer="zeros", |
| 194 | + dtype="int8", |
| 195 | + trainable=False, |
| 196 | + ) |
| 197 | + self.reverse_embeddings_scale = self.add_weight( |
| 198 | + name="reverse_embeddings_scale", |
| 199 | + shape=(self.input_dim,), |
| 200 | + initializer="ones", |
| 201 | + trainable=False, |
| 202 | + ) |
| 203 | + |
| 204 | + def _int4_build(self, embeddings_shape): |
| 205 | + if embeddings_shape is None: |
| 206 | + embeddings_shape = (self.input_dim, self.output_dim) |
| 207 | + super()._int4_build(embeddings_shape=embeddings_shape) |
| 208 | + self.inputs_quantizer = quantizers.AbsMaxQuantizer(axis=-1) |
| 209 | + if not self.tie_weights: |
| 210 | + packed_rows = (self.output_dim + 1) // 2 # ceil for odd dims |
| 211 | + self.reverse_embeddings = self.add_weight( |
| 212 | + name="reverse_embeddings", |
| 213 | + shape=(packed_rows, self.input_dim), |
| 214 | + initializer="zeros", |
| 215 | + dtype="int8", |
| 216 | + trainable=False, |
| 217 | + ) |
| 218 | + self.reverse_embeddings_scale = self.add_weight( |
| 219 | + name="reverse_embeddings_scale", |
| 220 | + shape=(self.input_dim,), |
| 221 | + initializer="ones", |
| 222 | + trainable=False, |
| 223 | + ) |
| 224 | + |
| 225 | + def _int8_call(self, inputs, reverse=False): |
| 226 | + if not reverse: |
| 227 | + return super()._int8_call(inputs) |
| 228 | + else: |
| 229 | + if self.tie_weights: |
| 230 | + kernel = ops.transpose(self._embeddings) |
| 231 | + scale = ops.transpose(self.embeddings_scale) |
| 232 | + else: |
| 233 | + kernel = self.reverse_embeddings |
| 234 | + scale = self.reverse_embeddings_scale |
| 235 | + inputs, inputs_scale = self.inputs_quantizer(inputs) |
| 236 | + logits = ops.matmul(inputs, kernel) |
| 237 | + # De-scale outputs |
| 238 | + logits = ops.cast(logits, self.compute_dtype) |
| 239 | + logits = ops.divide(logits, ops.multiply(inputs_scale, scale)) |
| 240 | + # Optionally soft-cap logits. |
| 241 | + if self.logit_soft_cap is not None: |
| 242 | + soft_cap = self.logit_soft_cap |
| 243 | + logits = ops.multiply( |
| 244 | + ops.tanh(ops.divide(logits, soft_cap)), soft_cap |
| 245 | + ) |
| 246 | + return logits |
| 247 | + |
| 248 | + def _int4_call(self, inputs, reverse=False): |
| 249 | + if not reverse: |
| 250 | + return super()._int4_call(inputs) |
| 251 | + else: |
| 252 | + if self.tie_weights: |
| 253 | + embeddings = ops.transpose(self._embeddings) |
| 254 | + scale = ops.transpose(self.embeddings_scale) |
| 255 | + else: |
| 256 | + embeddings = self.reverse_embeddings |
| 257 | + scale = self.reverse_embeddings_scale |
| 258 | + unpacked_embeddings = quantizers.unpack_int4( |
| 259 | + embeddings, self.output_dim, axis=0 |
| 260 | + ) |
| 261 | + inputs, inputs_scale = self.inputs_quantizer(inputs) |
| 262 | + logits = ops.matmul(inputs, unpacked_embeddings) |
| 263 | + # De-scale outputs |
| 264 | + logits = ops.cast(logits, self.compute_dtype) |
| 265 | + logits = ops.divide(logits, ops.multiply(inputs_scale, scale)) |
| 266 | + # Optionally soft-cap logits. |
| 267 | + if self.logit_soft_cap is not None: |
| 268 | + soft_cap = self.logit_soft_cap |
| 269 | + logits = ops.multiply( |
| 270 | + ops.tanh(ops.divide(logits, soft_cap)), soft_cap |
| 271 | + ) |
| 272 | + return logits |
| 273 | + |
| 274 | + def quantize(self, mode, type_check=True, config=None): |
| 275 | + del config |
| 276 | + if type_check and type(self) is not ReversibleEmbedding: |
| 277 | + raise self._not_implemented_error(self.quantize) |
| 278 | + |
| 279 | + embeddings_shape = (self.input_dim, self.output_dim) |
| 280 | + if mode == "int8": |
| 281 | + # Quantize `self._embeddings` to int8 and compute corresponding |
| 282 | + # scale. |
| 283 | + embeddings_value, embeddings_scale = quantizers.abs_max_quantize( |
| 284 | + self._embeddings, axis=-1, to_numpy=True |
| 285 | + ) |
| 286 | + embeddings_scale = ops.squeeze(embeddings_scale, axis=-1) |
| 287 | + del self._embeddings |
| 288 | + if not self.tie_weights: |
| 289 | + reverse_embeddings_value, reverse_embeddings_scale = ( |
| 290 | + quantizers.abs_max_quantize( |
| 291 | + self.reverse_embeddings, axis=0, to_numpy=True |
| 292 | + ) |
| 293 | + ) |
| 294 | + reverse_embeddings_scale = ops.squeeze( |
| 295 | + reverse_embeddings_scale, axis=0 |
| 296 | + ) |
| 297 | + del self.reverse_embeddings |
| 298 | + self.quantized_build(embeddings_shape, mode) |
| 299 | + self._embeddings.assign(embeddings_value) |
| 300 | + self.embeddings_scale.assign(embeddings_scale) |
| 301 | + if not self.tie_weights: |
| 302 | + self.reverse_embeddings.assign(reverse_embeddings_value) |
| 303 | + self.reverse_embeddings_scale.assign(reverse_embeddings_scale) |
| 304 | + elif mode == "int4": |
| 305 | + # Quantize to int4 values (stored in int8 dtype, range [-8, 7]). |
| 306 | + embeddings_value, embeddings_scale = quantizers.abs_max_quantize( |
| 307 | + self._embeddings, |
| 308 | + axis=-1, |
| 309 | + value_range=(-8, 7), |
| 310 | + dtype="int8", |
| 311 | + to_numpy=True, |
| 312 | + ) |
| 313 | + embeddings_scale = ops.squeeze(embeddings_scale, axis=-1) |
| 314 | + # 2. Pack two int4 values into a single int8 byte. |
| 315 | + packed_embeddings_value, _, _ = quantizers.pack_int4( |
| 316 | + embeddings_value, axis=-1 |
| 317 | + ) |
| 318 | + del self._embeddings |
| 319 | + if not self.tie_weights: |
| 320 | + reverse_embeddings_value, reverse_embeddings_scale = ( |
| 321 | + quantizers.abs_max_quantize( |
| 322 | + self.reverse_embeddings, |
| 323 | + axis=0, |
| 324 | + value_range=(-8, 7), |
| 325 | + dtype="int8", |
| 326 | + to_numpy=True, |
| 327 | + ) |
| 328 | + ) |
| 329 | + reverse_embeddings_scale = ops.squeeze( |
| 330 | + reverse_embeddings_scale, axis=0 |
| 331 | + ) |
| 332 | + # Pack two int4 values into a single int8 byte. |
| 333 | + packed_reverse_embeddings_value, _, _ = quantizers.pack_int4( |
| 334 | + reverse_embeddings_value, axis=0 |
| 335 | + ) |
| 336 | + del self.reverse_embeddings |
| 337 | + self.quantized_build(embeddings_shape, mode) |
| 338 | + self._embeddings.assign(packed_embeddings_value) |
| 339 | + self.embeddings_scale.assign(embeddings_scale) |
| 340 | + if not self.tie_weights: |
| 341 | + self.reverse_embeddings.assign(packed_reverse_embeddings_value) |
| 342 | + self.reverse_embeddings_scale.assign(reverse_embeddings_scale) |
| 343 | + else: |
| 344 | + raise self._quantization_mode_error(mode) |
| 345 | + |
| 346 | + # Set new dtype policy. |
| 347 | + if self.dtype_policy.quantization_mode is None: |
| 348 | + policy = dtype_policies.get(f"{mode}_from_{self.dtype_policy.name}") |
| 349 | + self.dtype_policy = policy |
0 commit comments