Skip to content

Latest commit

 

History

History
215 lines (174 loc) · 5.11 KB

File metadata and controls

215 lines (174 loc) · 5.11 KB
comments difficulty edit_url tags
true
简单
数组
二分查找

English Version

题目描述

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1


示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

 

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

解法

方法一:二分查找

我们定义二分查找的左边界 $left=0$,右边界 $right=n-1$

每一次循环,我们计算中间位置 $mid=(left+right)/2$,然后判断 $nums[mid]$$target$ 的大小关系:

  • 如果 $nums[mid] \geq target$,则说明 $target$$[left, mid]$ 之间,我们将 $right$ 更新为 $mid$
  • 否则,说明 $target$$[mid+1, right]$ 之间,我们将 $left$ 更新为 $mid+1$

$left \geq right$ 时,我们判断 $nums[left]$ 是否等于 $target$,如果等于则返回 $left$,否则返回 $-1$

时间复杂度 $O(\log n)$,其中 $n$ 是数组 $nums$ 的长度。空间复杂度 $O(1)$

Python3

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums) - 1
        while left < right:
            mid = (left + right) >> 1
            if nums[mid] >= target:
                right = mid
            else:
                left = mid + 1
        return left if nums[left] == target else -1

Java

class Solution {
    public int search(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[mid] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return nums[left] == target ? left : -1;
    }
}

C++

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int mid = left + right >> 1;
            if (nums[mid] >= target)
                right = mid;
            else
                left = mid + 1;
        }
        return nums[left] == target ? left : -1;
    }
};

Go

func search(nums []int, target int) int {
	left, right := 0, len(nums)-1
	for left < right {
		mid := (left + right) >> 1
		if nums[mid] >= target {
			right = mid
		} else {
			left = mid + 1
		}
	}
	if nums[left] == target {
		return left
	}
	return -1
}

Rust

use std::cmp::Ordering;

impl Solution {
    pub fn search(nums: Vec<i32>, target: i32) -> i32 {
        let mut l = 0;
        let mut r = nums.len();
        while l < r {
            let mid = (l + r) >> 1;
            match nums[mid].cmp(&target) {
                Ordering::Less => {
                    l = mid + 1;
                }
                Ordering::Greater => {
                    r = mid;
                }
                Ordering::Equal => {
                    return mid as i32;
                }
            }
        }
        -1
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var search = function (nums, target) {
    let left = 0;
    let right = nums.length - 1;
    while (left < right) {
        const mid = (left + right) >> 1;
        if (nums[mid] >= target) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }
    return nums[left] == target ? left : -1;
};

C#

public class Solution {
    public int Search(int[] nums, int target) {
        int left = 0, right = nums.Length - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[mid] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return nums[left] == target ? left : -1;
    }
}