comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
Given an integer n
, return the number of ways you can write n
as the sum of consecutive positive integers.
Example 1:
Input: n = 5 Output: 2 Explanation: 5 = 2 + 3
Example 2:
Input: n = 9 Output: 3 Explanation: 9 = 4 + 5 = 2 + 3 + 4
Example 3:
Input: n = 15 Output: 4 Explanation: 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
Constraints:
1 <= n <= 109
class Solution:
def consecutiveNumbersSum(self, n: int) -> int:
n <<= 1
ans, k = 0, 1
while k * (k + 1) <= n:
if n % k == 0 and (n // k + 1 - k) % 2 == 0:
ans += 1
k += 1
return ans
class Solution {
public int consecutiveNumbersSum(int n) {
n <<= 1;
int ans = 0;
for (int k = 1; k * (k + 1) <= n; ++k) {
if (n % k == 0 && (n / k + 1 - k) % 2 == 0) {
++ans;
}
}
return ans;
}
}
class Solution {
public:
int consecutiveNumbersSum(int n) {
n <<= 1;
int ans = 0;
for (int k = 1; k * (k + 1) <= n; ++k) {
if (n % k == 0 && (n / k + 1 - k) % 2 == 0) {
++ans;
}
}
return ans;
}
};
func consecutiveNumbersSum(n int) int {
n <<= 1
ans := 0
for k := 1; k*(k+1) <= n; k++ {
if n%k == 0 && (n/k+1-k)%2 == 0 {
ans++
}
}
return ans
}