Skip to content

Latest commit

 

History

History
367 lines (310 loc) · 10.5 KB

File metadata and controls

367 lines (310 loc) · 10.5 KB
comments difficulty edit_url rating source tags
true
中等
1745
第 181 场周赛 Q3
深度优先搜索
广度优先搜索
并查集
数组
矩阵

English Version

题目描述

给你一个 m x n 的网格 grid。网格里的每个单元都代表一条街道。grid[i][j] 的街道可以是:

  • 1 表示连接左单元格和右单元格的街道。
  • 2 表示连接上单元格和下单元格的街道。
  • 3 表示连接左单元格和下单元格的街道。
  • 4 表示连接右单元格和下单元格的街道。
  • 5 表示连接左单元格和上单元格的街道。
  • 6 表示连接右单元格和上单元格的街道。

你最开始从左上角的单元格 (0,0) 开始出发,网格中的「有效路径」是指从左上方的单元格 (0,0) 开始、一直到右下方的 (m-1,n-1) 结束的路径。该路径必须只沿着街道走

注意:不能 变更街道。

如果网格中存在有效的路径,则返回 true,否则返回 false

 

示例 1:

输入:grid = [[2,4,3],[6,5,2]]
输出:true
解释:如图所示,你可以从 (0, 0) 开始,访问网格中的所有单元格并到达 (m - 1, n - 1) 。

示例 2:

输入:grid = [[1,2,1],[1,2,1]]
输出:false
解释:如图所示,单元格 (0, 0) 上的街道没有与任何其他单元格上的街道相连,你只会停在 (0, 0) 处。

示例 3:

输入:grid = [[1,1,2]]
输出:false
解释:你会停在 (0, 1),而且无法到达 (0, 2) 。

示例 4:

输入:grid = [[1,1,1,1,1,1,3]]
输出:true

示例 5:

输入:grid = [[2],[2],[2],[2],[2],[2],[6]]
输出:true

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • 1 <= grid[i][j] <= 6

解法

方法一

Python3

class Solution:
    def hasValidPath(self, grid: List[List[int]]) -> bool:
        m, n = len(grid), len(grid[0])
        p = list(range(m * n))

        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        def left(i, j):
            if j > 0 and grid[i][j - 1] in (1, 4, 6):
                p[find(i * n + j)] = find(i * n + j - 1)

        def right(i, j):
            if j < n - 1 and grid[i][j + 1] in (1, 3, 5):
                p[find(i * n + j)] = find(i * n + j + 1)

        def up(i, j):
            if i > 0 and grid[i - 1][j] in (2, 3, 4):
                p[find(i * n + j)] = find((i - 1) * n + j)

        def down(i, j):
            if i < m - 1 and grid[i + 1][j] in (2, 5, 6):
                p[find(i * n + j)] = find((i + 1) * n + j)

        for i in range(m):
            for j in range(n):
                e = grid[i][j]
                if e == 1:
                    left(i, j)
                    right(i, j)
                elif e == 2:
                    up(i, j)
                    down(i, j)
                elif e == 3:
                    left(i, j)
                    down(i, j)
                elif e == 4:
                    right(i, j)
                    down(i, j)
                elif e == 5:
                    left(i, j)
                    up(i, j)
                else:
                    right(i, j)
                    up(i, j)
        return find(0) == find(m * n - 1)

Java

class Solution {
    private int[] p;
    private int[][] grid;
    private int m;
    private int n;

    public boolean hasValidPath(int[][] grid) {
        this.grid = grid;
        m = grid.length;
        n = grid[0].length;
        p = new int[m * n];
        for (int i = 0; i < p.length; ++i) {
            p[i] = i;
        }
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int e = grid[i][j];
                if (e == 1) {
                    left(i, j);
                    right(i, j);
                } else if (e == 2) {
                    up(i, j);
                    down(i, j);
                } else if (e == 3) {
                    left(i, j);
                    down(i, j);
                } else if (e == 4) {
                    right(i, j);
                    down(i, j);
                } else if (e == 5) {
                    left(i, j);
                    up(i, j);
                } else {
                    right(i, j);
                    up(i, j);
                }
            }
        }
        return find(0) == find(m * n - 1);
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }

    private void left(int i, int j) {
        if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) {
            p[find(i * n + j)] = find(i * n + j - 1);
        }
    }

    private void right(int i, int j) {
        if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) {
            p[find(i * n + j)] = find(i * n + j + 1);
        }
    }

    private void up(int i, int j) {
        if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) {
            p[find(i * n + j)] = find((i - 1) * n + j);
        }
    }

    private void down(int i, int j) {
        if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) {
            p[find(i * n + j)] = find((i + 1) * n + j);
        }
    }
}

C++

class Solution {
public:
    vector<int> p;

    bool hasValidPath(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        p.resize(m * n);
        for (int i = 0; i < p.size(); ++i) p[i] = i;
        auto left = [&](int i, int j) {
            if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) {
                p[find(i * n + j)] = find(i * n + j - 1);
            }
        };
        auto right = [&](int i, int j) {
            if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) {
                p[find(i * n + j)] = find(i * n + j + 1);
            }
        };
        auto up = [&](int i, int j) {
            if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) {
                p[find(i * n + j)] = find((i - 1) * n + j);
            }
        };
        auto down = [&](int i, int j) {
            if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) {
                p[find(i * n + j)] = find((i + 1) * n + j);
            }
        };
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int e = grid[i][j];
                if (e == 1) {
                    left(i, j);
                    right(i, j);
                } else if (e == 2) {
                    up(i, j);
                    down(i, j);
                } else if (e == 3) {
                    left(i, j);
                    down(i, j);
                } else if (e == 4) {
                    right(i, j);
                    down(i, j);
                } else if (e == 5) {
                    left(i, j);
                    up(i, j);
                } else {
                    right(i, j);
                    up(i, j);
                }
            }
        }
        return find(0) == find(m * n - 1);
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

func hasValidPath(grid [][]int) bool {
	m, n := len(grid), len(grid[0])
	p := make([]int, m*n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	left := func(i, j int) {
		if j > 0 && (grid[i][j-1] == 1 || grid[i][j-1] == 4 || grid[i][j-1] == 6) {
			p[find(i*n+j)] = find(i*n + j - 1)
		}
	}
	right := func(i, j int) {
		if j < n-1 && (grid[i][j+1] == 1 || grid[i][j+1] == 3 || grid[i][j+1] == 5) {
			p[find(i*n+j)] = find(i*n + j + 1)
		}
	}
	up := func(i, j int) {
		if i > 0 && (grid[i-1][j] == 2 || grid[i-1][j] == 3 || grid[i-1][j] == 4) {
			p[find(i*n+j)] = find((i-1)*n + j)
		}
	}
	down := func(i, j int) {
		if i < m-1 && (grid[i+1][j] == 2 || grid[i+1][j] == 5 || grid[i+1][j] == 6) {
			p[find(i*n+j)] = find((i+1)*n + j)
		}
	}
	for i, row := range grid {
		for j, e := range row {
			if e == 1 {
				left(i, j)
				right(i, j)
			} else if e == 2 {
				up(i, j)
				down(i, j)
			} else if e == 3 {
				left(i, j)
				down(i, j)
			} else if e == 4 {
				right(i, j)
				down(i, j)
			} else if e == 5 {
				left(i, j)
				up(i, j)
			} else {
				right(i, j)
				up(i, j)
			}
		}
	}
	return find(0) == find(m*n-1)
}