comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1672 |
第 187 场周赛 Q3 |
|
给你一个整数数组 nums
,和一个表示限制的整数 limit
,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit
。
如果不存在满足条件的子数组,则返回 0
。
示例 1:
输入:nums = [8,2,4,7], limit = 4 输出:2 解释:所有子数组如下: [8] 最大绝对差 |8-8| = 0 <= 4. [8,2] 最大绝对差 |8-2| = 6 > 4. [8,2,4] 最大绝对差 |8-2| = 6 > 4. [8,2,4,7] 最大绝对差 |8-2| = 6 > 4. [2] 最大绝对差 |2-2| = 0 <= 4. [2,4] 最大绝对差 |2-4| = 2 <= 4. [2,4,7] 最大绝对差 |2-7| = 5 > 4. [4] 最大绝对差 |4-4| = 0 <= 4. [4,7] 最大绝对差 |4-7| = 3 <= 4. [7] 最大绝对差 |7-7| = 0 <= 4. 因此,满足题意的最长子数组的长度为 2 。
示例 2:
输入:nums = [10,1,2,4,7,2], limit = 5 输出:4 解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0 输出:3
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
0 <= limit <= 10^9
我们可以枚举每个位置作为子数组的右端点,找到其对应的最靠左的左端点,满足区间内中最大值与最小值的差值不超过
时间复杂度 nums
的长度。
from sortedcontainers import SortedList
class Solution:
def longestSubarray(self, nums: List[int], limit: int) -> int:
sl = SortedList()
ans = j = 0
for i, x in enumerate(nums):
sl.add(x)
while sl[-1] - sl[0] > limit:
sl.remove(nums[j])
j += 1
ans = max(ans, i - j + 1)
return ans
class Solution {
public int longestSubarray(int[] nums, int limit) {
TreeMap<Integer, Integer> tm = new TreeMap<>();
int ans = 0;
for (int i = 0, j = 0; i < nums.length; ++i) {
tm.merge(nums[i], 1, Integer::sum);
for (; tm.lastKey() - tm.firstKey() > limit; ++j) {
if (tm.merge(nums[j], -1, Integer::sum) == 0) {
tm.remove(nums[j]);
}
}
ans = Math.max(ans, i - j + 1);
}
return ans;
}
}
class Solution {
public:
int longestSubarray(vector<int>& nums, int limit) {
multiset<int> s;
int ans = 0, j = 0;
for (int i = 0; i < nums.size(); ++i) {
s.insert(nums[i]);
while (*s.rbegin() - *s.begin() > limit) {
s.erase(s.find(nums[j++]));
}
ans = max(ans, i - j + 1);
}
return ans;
}
};
func longestSubarray(nums []int, limit int) (ans int) {
merge := func(st *redblacktree.Tree[int, int], x, v int) {
c, _ := st.Get(x)
if c+v == 0 {
st.Remove(x)
} else {
st.Put(x, c+v)
}
}
st := redblacktree.New[int, int]()
j := 0
for i, x := range nums {
merge(st, x, 1)
for ; st.Right().Key-st.Left().Key > limit; j++ {
merge(st, nums[j], -1)
}
ans = max(ans, i-j+1)
}
return
}
function longestSubarray(nums: number[], limit: number): number {
const ts = new TreapMultiSet<number>();
let ans = 0;
let j = 0;
for (let i = 0; i < nums.length; ++i) {
ts.add(nums[i]);
while (ts.last()! - ts.first()! > limit) {
ts.delete(nums[j++]);
}
ans = Math.max(ans, i - j + 1);
}
return ans;
}
type CompareFunction<T, R extends 'number' | 'boolean'> = (
a: T,
b: T,
) => R extends 'number' ? number : boolean;
interface ITreapMultiSet<T> extends Iterable<T> {
add: (...value: T[]) => this;
has: (value: T) => boolean;
delete: (value: T) => void;
bisectLeft: (value: T) => number;
bisectRight: (value: T) => number;
indexOf: (value: T) => number;
lastIndexOf: (value: T) => number;
at: (index: number) => T | undefined;
first: () => T | undefined;
last: () => T | undefined;
lower: (value: T) => T | undefined;
higher: (value: T) => T | undefined;
floor: (value: T) => T | undefined;
ceil: (value: T) => T | undefined;
shift: () => T | undefined;
pop: (index?: number) => T | undefined;
count: (value: T) => number;
keys: () => IterableIterator<T>;
values: () => IterableIterator<T>;
rvalues: () => IterableIterator<T>;
entries: () => IterableIterator<[number, T]>;
readonly size: number;
}
class TreapNode<T = number> {
value: T;
count: number;
size: number;
priority: number;
left: TreapNode<T> | null;
right: TreapNode<T> | null;
constructor(value: T) {
this.value = value;
this.count = 1;
this.size = 1;
this.priority = Math.random();
this.left = null;
this.right = null;
}
static getSize(node: TreapNode<any> | null): number {
return node?.size ?? 0;
}
static getFac(node: TreapNode<any> | null): number {
return node?.priority ?? 0;
}
pushUp(): void {
let tmp = this.count;
tmp += TreapNode.getSize(this.left);
tmp += TreapNode.getSize(this.right);
this.size = tmp;
}
rotateRight(): TreapNode<T> {
// eslint-disable-next-line @typescript-eslint/no-this-alias
let node: TreapNode<T> = this;
const left = node.left;
node.left = left?.right ?? null;
left && (left.right = node);
left && (node = left);
node.right?.pushUp();
node.pushUp();
return node;
}
rotateLeft(): TreapNode<T> {
// eslint-disable-next-line @typescript-eslint/no-this-alias
let node: TreapNode<T> = this;
const right = node.right;
node.right = right?.left ?? null;
right && (right.left = node);
right && (node = right);
node.left?.pushUp();
node.pushUp();
return node;
}
}
class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
private readonly root: TreapNode<T>;
private readonly compareFn: CompareFunction<T, 'number'>;
private readonly leftBound: T;
private readonly rightBound: T;
constructor(compareFn?: CompareFunction<T, 'number'>);
constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
constructor(
compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
leftBound: any = -Infinity,
rightBound: any = Infinity,
) {
this.root = new TreapNode<T>(rightBound);
this.root.priority = Infinity;
this.root.left = new TreapNode<T>(leftBound);
this.root.left.priority = -Infinity;
this.root.pushUp();
this.leftBound = leftBound;
this.rightBound = rightBound;
this.compareFn = compareFn;
}
get size(): number {
return this.root.size - 2;
}
get height(): number {
const getHeight = (node: TreapNode<T> | null): number => {
if (node == null) return 0;
return 1 + Math.max(getHeight(node.left), getHeight(node.right));
};
return getHeight(this.root);
}
/**
*
* @complexity `O(logn)`
* @description Returns true if value is a member.
*/
has(value: T): boolean {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): boolean => {
if (node == null) return false;
if (compare(node.value, value) === 0) return true;
if (compare(node.value, value) < 0) return dfs(node.right, value);
return dfs(node.left, value);
};
return dfs(this.root, value);
}
/**
*
* @complexity `O(logn)`
* @description Add value to sorted set.
*/
add(...values: T[]): this {
const compare = this.compareFn;
const dfs = (
node: TreapNode<T> | null,
value: T,
parent: TreapNode<T>,
direction: 'left' | 'right',
): void => {
if (node == null) return;
if (compare(node.value, value) === 0) {
node.count++;
node.pushUp();
} else if (compare(node.value, value) > 0) {
if (node.left) {
dfs(node.left, value, node, 'left');
} else {
node.left = new TreapNode(value);
node.pushUp();
}
if (TreapNode.getFac(node.left) > node.priority) {
parent[direction] = node.rotateRight();
}
} else if (compare(node.value, value) < 0) {
if (node.right) {
dfs(node.right, value, node, 'right');
} else {
node.right = new TreapNode(value);
node.pushUp();
}
if (TreapNode.getFac(node.right) > node.priority) {
parent[direction] = node.rotateLeft();
}
}
parent.pushUp();
};
values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
return this;
}
/**
*
* @complexity `O(logn)`
* @description Remove value from sorted set if it is a member.
* If value is not a member, do nothing.
*/
delete(value: T): void {
const compare = this.compareFn;
const dfs = (
node: TreapNode<T> | null,
value: T,
parent: TreapNode<T>,
direction: 'left' | 'right',
): void => {
if (node == null) return;
if (compare(node.value, value) === 0) {
if (node.count > 1) {
node.count--;
node?.pushUp();
} else if (node.left == null && node.right == null) {
parent[direction] = null;
} else {
// 旋到根节点
if (
node.right == null ||
TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
) {
parent[direction] = node.rotateRight();
dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
} else {
parent[direction] = node.rotateLeft();
dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
}
}
} else if (compare(node.value, value) > 0) {
dfs(node.left, value, node, 'left');
} else if (compare(node.value, value) < 0) {
dfs(node.right, value, node, 'right');
}
parent?.pushUp();
};
dfs(this.root.left, value, this.root, 'left');
}
/**
*
* @complexity `O(logn)`
* @description Returns an index to insert value in the sorted set.
* If the value is already present, the insertion point will be before (to the left of) any existing values.
*/
bisectLeft(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
return TreapNode.getSize(node.left);
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
return dfs(this.root, value) - 1;
}
/**
*
* @complexity `O(logn)`
* @description Returns an index to insert value in the sorted set.
* If the value is already present, the insertion point will be before (to the right of) any existing values.
*/
bisectRight(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
return TreapNode.getSize(node.left) + node.count;
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
return dfs(this.root, value) - 1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
*/
indexOf(value: T): number {
const compare = this.compareFn;
let isExist = false;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
isExist = true;
return TreapNode.getSize(node.left);
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
const res = dfs(this.root, value) - 1;
return isExist ? res : -1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
*/
lastIndexOf(value: T): number {
const compare = this.compareFn;
let isExist = false;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
isExist = true;
return TreapNode.getSize(node.left) + node.count - 1;
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
const res = dfs(this.root, value) - 1;
return isExist ? res : -1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the item located at the specified index.
* @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
*/
at(index: number): T | undefined {
if (index < 0) index += this.size;
if (index < 0 || index >= this.size) return undefined;
const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
if (node == null) return undefined;
if (TreapNode.getSize(node.left) >= rank) {
return dfs(node.left, rank);
} else if (TreapNode.getSize(node.left) + node.count >= rank) {
return node.value;
} else {
return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
}
};
const res = dfs(this.root, index + 2);
return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element less than `val`, return `undefined` if no such element found.
*/
lower(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) >= 0) return dfs(node.left, value);
const tmp = dfs(node.right, value);
if (tmp == null || compare(node.value, tmp) > 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.leftBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element greater than `val`, return `undefined` if no such element found.
*/
higher(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) <= 0) return dfs(node.right, value);
const tmp = dfs(node.left, value);
if (tmp == null || compare(node.value, tmp) < 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.rightBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
*/
floor(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) === 0) return node.value;
if (compare(node.value, value) >= 0) return dfs(node.left, value);
const tmp = dfs(node.right, value);
if (tmp == null || compare(node.value, tmp) > 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.leftBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
*/
ceil(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) === 0) return node.value;
if (compare(node.value, value) <= 0) return dfs(node.right, value);
const tmp = dfs(node.left, value);
if (tmp == null || compare(node.value, tmp) < 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.rightBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Returns the last element from set.
* If the set is empty, undefined is returned.
*/
first(): T | undefined {
const iter = this.inOrder();
iter.next();
const res = iter.next().value;
return res === this.rightBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Returns the last element from set.
* If the set is empty, undefined is returned .
*/
last(): T | undefined {
const iter = this.reverseInOrder();
iter.next();
const res = iter.next().value;
return res === this.leftBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Removes the first element from an set and returns it.
* If the set is empty, undefined is returned and the set is not modified.
*/
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
/**
* @complexity `O(logn)`
* @description
* Removes the last element from an set and returns it.
* If the set is empty, undefined is returned and the set is not modified.
*/
pop(index?: number): T | undefined {
if (index == null) {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
const toDelete = this.at(index);
if (toDelete == null) return;
this.delete(toDelete);
return toDelete;
}
/**
*
* @complexity `O(logn)`
* @description
* Returns number of occurrences of value in the sorted set.
*/
count(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) return node.count;
if (compare(node.value, value) < 0) return dfs(node.right, value);
return dfs(node.left, value);
};
return dfs(this.root, value);
}
*[Symbol.iterator](): Generator<T, any, any> {
yield* this.values();
}
/**
* @description
* Returns an iterable of keys in the set.
*/
*keys(): Generator<T, any, any> {
yield* this.values();
}
/**
* @description
* Returns an iterable of values in the set.
*/
*values(): Generator<T, any, any> {
const iter = this.inOrder();
iter.next();
const steps = this.size;
for (let _ = 0; _ < steps; _++) {
yield iter.next().value;
}
}
/**
* @description
* Returns a generator for reversed order traversing the set.
*/
*rvalues(): Generator<T, any, any> {
const iter = this.reverseInOrder();
iter.next();
const steps = this.size;
for (let _ = 0; _ < steps; _++) {
yield iter.next().value;
}
}
/**
* @description
* Returns an iterable of key, value pairs for every entry in the set.
*/
*entries(): IterableIterator<[number, T]> {
const iter = this.inOrder();
iter.next();
const steps = this.size;
for (let i = 0; i < steps; i++) {
yield [i, iter.next().value];
}
}
private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
if (root == null) return;
yield* this.inOrder(root.left);
const count = root.count;
for (let _ = 0; _ < count; _++) {
yield root.value;
}
yield* this.inOrder(root.right);
}
private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
if (root == null) return;
yield* this.reverseInOrder(root.right);
const count = root.count;
for (let _ = 0; _ < count; _++) {
yield root.value;
}
yield* this.reverseInOrder(root.left);
}
}
我们注意到,如果一个长度为
我们定义二分查找的左边界
时间复杂度
class Solution:
def longestSubarray(self, nums: List[int], limit: int) -> int:
def check(k: int) -> bool:
min_q = deque()
max_q = deque()
for i, x in enumerate(nums):
if min_q and i - min_q[0] + 1 > k:
min_q.popleft()
if max_q and i - max_q[0] + 1 > k:
max_q.popleft()
while min_q and nums[min_q[-1]] >= x:
min_q.pop()
while max_q and nums[max_q[-1]] <= x:
max_q.pop()
min_q.append(i)
max_q.append(i)
if i >= k - 1 and nums[max_q[0]] - nums[min_q[0]] <= limit:
return True
return False
l, r = 1, len(nums)
while l < r:
mid = (l + r + 1) >> 1
if check(mid):
l = mid
else:
r = mid - 1
return l
class Solution {
private int[] nums;
private int limit;
public int longestSubarray(int[] nums, int limit) {
this.nums = nums;
this.limit = limit;
int l = 1, r = nums.length;
while (l < r) {
int mid = (l + r + 1) >> 1;
if (check(mid)) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
private boolean check(int k) {
Deque<Integer> minQ = new ArrayDeque<>();
Deque<Integer> maxQ = new ArrayDeque<>();
for (int i = 0; i < nums.length; ++i) {
if (!minQ.isEmpty() && i - minQ.peekFirst() + 1 > k) {
minQ.pollFirst();
}
if (!maxQ.isEmpty() && i - maxQ.peekFirst() + 1 > k) {
maxQ.pollFirst();
}
while (!minQ.isEmpty() && nums[minQ.peekLast()] >= nums[i]) {
minQ.pollLast();
}
while (!maxQ.isEmpty() && nums[maxQ.peekLast()] <= nums[i]) {
maxQ.pollLast();
}
minQ.offer(i);
maxQ.offer(i);
if (i >= k - 1 && nums[maxQ.peekFirst()] - nums[minQ.peekFirst()] <= limit) {
return true;
}
}
return false;
}
}
class Solution {
public:
int longestSubarray(vector<int>& nums, int limit) {
auto check = [&](int k) {
deque<int> min_q;
deque<int> max_q;
for (int i = 0; i < nums.size(); ++i) {
if (!min_q.empty() && i - min_q.front() + 1 > k) {
min_q.pop_front();
}
if (!max_q.empty() && i - max_q.front() + 1 > k) {
max_q.pop_front();
}
while (!min_q.empty() && nums[min_q.back()] >= nums[i]) {
min_q.pop_back();
}
while (!max_q.empty() && nums[max_q.back()] <= nums[i]) {
max_q.pop_back();
}
min_q.push_back(i);
max_q.push_back(i);
if (i >= k - 1 && nums[max_q.front()] - nums[min_q.front()] <= limit) {
return true;
}
}
return false;
};
int l = 1, r = nums.size();
while (l < r) {
int mid = (l + r + 1) >> 1;
if (check(mid)) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
};
func longestSubarray(nums []int, limit int) int {
l, r := 0, len(nums)
check := func(k int) bool {
minq := Deque{}
maxq := Deque{}
for i, x := range nums {
for !minq.Empty() && i-minq.Front()+1 > k {
minq.PopFront()
}
for !maxq.Empty() && i-maxq.Front()+1 > k {
maxq.PopFront()
}
for !minq.Empty() && nums[minq.Back()] >= x {
minq.PopBack()
}
for !maxq.Empty() && nums[maxq.Back()] <= x {
maxq.PopBack()
}
minq.PushBack(i)
maxq.PushBack(i)
if i >= k-1 && nums[maxq.Front()]-nums[minq.Front()] <= limit {
return true
}
}
return false
}
for l < r {
mid := (l + r + 1) >> 1
if check(mid) {
l = mid
} else {
r = mid - 1
}
}
return l
}
// template
type Deque struct{ l, r []int }
func (q Deque) Empty() bool {
return len(q.l) == 0 && len(q.r) == 0
}
func (q Deque) Size() int {
return len(q.l) + len(q.r)
}
func (q *Deque) PushFront(v int) {
q.l = append(q.l, v)
}
func (q *Deque) PushBack(v int) {
q.r = append(q.r, v)
}
func (q *Deque) PopFront() (v int) {
if len(q.l) > 0 {
q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
} else {
v, q.r = q.r[0], q.r[1:]
}
return
}
func (q *Deque) PopBack() (v int) {
if len(q.r) > 0 {
q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
} else {
v, q.l = q.l[0], q.l[1:]
}
return
}
func (q Deque) Front() int {
if len(q.l) > 0 {
return q.l[len(q.l)-1]
}
return q.r[0]
}
func (q Deque) Back() int {
if len(q.r) > 0 {
return q.r[len(q.r)-1]
}
return q.l[0]
}
func (q Deque) Get(i int) int {
if i < len(q.l) {
return q.l[len(q.l)-1-i]
}
return q.r[i-len(q.l)]
}
function longestSubarray(nums: number[], limit: number): number {
const n = nums.length;
let [l, r] = [0, n];
const check = (k: number): boolean => {
const minq = new Deque<number>();
const maxq = new Deque<number>();
for (let i = 0; i < n; ++i) {
while (!minq.isEmpty() && i - minq.frontValue()! + 1 > k) {
minq.popFront();
}
while (!maxq.isEmpty() && i - maxq.frontValue()! + 1 > k) {
maxq.popFront();
}
while (!minq.isEmpty() && nums[minq.backValue()!] >= nums[i]) {
minq.popBack();
}
while (!maxq.isEmpty() && nums[maxq.backValue()!] <= nums[i]) {
maxq.popBack();
}
minq.pushBack(i);
maxq.pushBack(i);
if (i >= k - 1 && nums[maxq.frontValue()!] - nums[minq.frontValue()!] <= limit) {
return true;
}
}
return false;
};
while (l < r) {
const mid = (l + r + 1) >> 1;
if (check(mid)) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
class Node<T> {
value: T;
next: Node<T> | null;
prev: Node<T> | null;
constructor(value: T) {
this.value = value;
this.next = null;
this.prev = null;
}
}
class Deque<T> {
private front: Node<T> | null;
private back: Node<T> | null;
private size: number;
constructor() {
this.front = null;
this.back = null;
this.size = 0;
}
pushFront(val: T): void {
const newNode = new Node(val);
if (this.isEmpty()) {
this.front = newNode;
this.back = newNode;
} else {
newNode.next = this.front;
this.front!.prev = newNode;
this.front = newNode;
}
this.size++;
}
pushBack(val: T): void {
const newNode = new Node(val);
if (this.isEmpty()) {
this.front = newNode;
this.back = newNode;
} else {
newNode.prev = this.back;
this.back!.next = newNode;
this.back = newNode;
}
this.size++;
}
popFront(): T | undefined {
if (this.isEmpty()) {
return undefined;
}
const value = this.front!.value;
this.front = this.front!.next;
if (this.front !== null) {
this.front.prev = null;
} else {
this.back = null;
}
this.size--;
return value;
}
popBack(): T | undefined {
if (this.isEmpty()) {
return undefined;
}
const value = this.back!.value;
this.back = this.back!.prev;
if (this.back !== null) {
this.back.next = null;
} else {
this.front = null;
}
this.size--;
return value;
}
frontValue(): T | undefined {
return this.front?.value;
}
backValue(): T | undefined {
return this.back?.value;
}
getSize(): number {
return this.size;
}
isEmpty(): boolean {
return this.size === 0;
}
}