-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpairbuilder8.cpp
617 lines (574 loc) · 22.3 KB
/
pairbuilder8.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/****************************************************************************************
* DANSS data analysis - build time correlated pairs and random pairs *
****************************************************************************************/
#include <libgen.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "Riostream.h"
#include "TROOT.h"
#include "TMath.h"
#include "TFile.h"
#include "TChain.h"
#include "TNetFile.h"
#include "TRandom.h"
#include "TTree.h"
#include "TBranch.h"
#include "TCanvas.h"
#include "TPostScript.h"
#include "TStyle.h"
#include "TClonesArray.h"
#include "TStopwatch.h"
#include "TTreeCacheUnzip.h"
#include "TRandom2.h"
#include "TDirectory.h"
#include "TProcessID.h"
#include "TObject.h"
#include "TClonesArray.h"
#include "TRefArray.h"
#include "TRef.h"
#include "TKey.h"
#include "TGraph.h"
#include "TF1.h"
#include "TH1.h"
#include "TH2.h"
#include "evtbuilder.h"
#define GFREQ2US (GLOBALFREQ / 1000000.0)
#define MAXTDIFF 50.0 // us
#define MINPOSE 0.5 // MeV
#define MAXPOSE 20.0 // MeV
#define AGAMMAN 0 // number of annihilation gamma hits (0 no requirement)
#define MINNEUTE 1.5 // MeV
#define MAXNEUTE 15.0 // MeV
#define NEUTN 3 // number of hits
#define MINVETOE 4.0 // MeV
#define VETON 2 // number of hits
#define DANSSVETOE 20.0 // Make veto if VETO counters are silent from Pmt or SiPM
#define BOTTOMVETOE 3.0 // Make veto from 2 bottom strip layers
#define RSHIFT 5000.0 // us
#define NRANDOM 16 // increase random statistics
#define SHOWERMIN 800 // 800 MeV shower event threshold
#define TISOLATIONM 140 // isolation us for random positron windows minus, 90 + 50 us
#define TISOLATIONP 80 // isolation us for random positron windows plus, 80 us
#define MUTDIFF 90 // muon window - 90 us
#define iMaxDataElements 3000
#define masterTrgRandom 2
#define FLAG_IGNORE 1
#define FLAG_NEUTRON 2
#define FLAG_POSITRON 4
#define FLAG_VETO 8
#define FLAG_SHOWER 16
#pragma pack(push,1)
struct TrigArrayStruct {
long long globalTime;
int flags;
};
#pragma pack(pop)
struct HitStruct {
float E[iMaxDataElements];
float T[iMaxDataElements];
struct HitTypeStruct type[iMaxDataElements];
};
double PMTYAverageLightColl(double x)
{
//<func(x)=1>
const double FuncAverage = 1.00147;
double rez;
rez = (0.987387*exp(-0.0016*(x-48)) + 0.023973*exp(-0.0877*(x-48)) - 0.0113581*exp(-0.1042*(x-48))
-2.30972E-6*exp(0.2214*(x-48))) / FuncAverage;
return rez;
}
double SiPMYAverageLightColl(double x)
{
//<func(x)=1>
const double FuncAverage = 1.02208;
double rez;
rez = (0.00577381*exp(-0.1823*(x-48)) + 0.999583*exp(-0.0024*(x-48)) - 8.095E-13*exp(0.5205*(x-48))
-0.00535714*exp(-0.1838*(x-48))) / FuncAverage;
return rez;
}
// Correction based on the neutron position if this was not done before based on the positron position
void NeutronCorr(struct DanssPairStruct7 *DanssPair)
{
double CSiPm, CPmt;
if (DanssPair->PositronX[0] < 0 && DanssPair->NeutronX[0] >= 0) {
CSiPm = SiPMYAverageLightColl(DanssPair->NeutronX[0]);
CPmt = PMTYAverageLightColl(DanssPair->NeutronX[0]);
} else if (DanssPair->PositronX[1] < 0 && DanssPair->NeutronX[1] >= 0) {
CSiPm = SiPMYAverageLightColl(DanssPair->NeutronX[1]);
CPmt = PMTYAverageLightColl(DanssPair->NeutronX[1]);
} else {
CSiPm = 1.0;
CPmt = 1.0;
}
DanssPair->PositronEnergy *= (CSiPm + CPmt) / 2;
DanssPair->PositronSiPmEnergy *= CSiPm;
DanssPair->PositronPmtEnergy *= CPmt;
}
void CopyHits(struct HitStruct *to, struct HitStruct *from, int N)
{
memcpy(to->E, from->E, N * sizeof(float));
memcpy(to->T, from->T, N * sizeof(float));
memcpy(to->type, from->type, N * sizeof(struct HitTypeStruct));
}
int IsIgnore(struct DanssEventStruct7 *DanssEvent, struct RawHitInfoStruct *RawHits)
// "(PmtCnt > 0 && PmtCleanHits/PmtCnt < 0.3) || SiPmHits/SiPmCnt < 0.3"
{
if (DanssEvent->trigType == masterTrgRandom) return 1; // ignore 1 Hz triggers
if (DanssEvent->VetoCleanHits > 0) return 0; // never kill VETO trigger
if (!RawHits) return 0;
if ((RawHits->PmtCnt > 0 && 1.0 * DanssEvent->PmtCleanHits / RawHits->PmtCnt < 0.3) ||
1.0 * DanssEvent->SiPmHits / RawHits->SiPmCnt < 0.3) return 1;
return 0;
}
int IsNeutron(struct DanssEventStruct7 *DanssEvent)
{
float E;
int rc;
E = DanssEvent->NeutronEnergy;
rc = (E >= MINNEUTE && E < MAXNEUTE && DanssEvent->NeutronHits >= NEUTN);
return rc;
}
int IsPositron(struct DanssEventStruct7 *DanssEvent)
{
float E;
int rc;
E = DanssEvent->PositronEnergy;
rc = (E >= MINPOSE && E < MAXPOSE && DanssEvent->AnnihilationGammas >= AGAMMAN);
return rc;
}
int IsVeto(struct DanssEventStruct7 *Event)
{
if (Event->VetoCleanEnergy > MINVETOE || Event->VetoCleanHits >= VETON ||
Event->PmtCleanEnergy + Event->SiPmCleanEnergy > 2*DANSSVETOE ||
Event->BottomLayersEnergy > BOTTOMVETOE) return 1;
return 0;
}
int IsShower(struct DanssEventStruct7 *Event)
{
if (Event->PmtCleanEnergy + Event->SiPmCleanEnergy > 2*SHOWERMIN) return 1;
return 0;
}
void MakePair(
struct DanssEventStruct7 *DanssEvent, // Neutron
struct DanssEventStruct7 *SavedEvent, // Positron
struct DanssEventStruct7 *VetoEvent, // Veto
struct DanssEventStruct7 *ShowerEvent, // Shower
struct DanssPairStruct7 *DanssPair)
{
double tmp;
int i;
memset(DanssPair, 0, sizeof(struct DanssPairStruct7));
DanssPair->number[0] = SavedEvent->number;
DanssPair->number[1] = DanssEvent->number;
DanssPair->globalTime[0] = SavedEvent->globalTime;
DanssPair->globalTime[1] = DanssEvent->globalTime;
DanssPair->unixTime = DanssEvent->unixTime;
// DanssPair->runNumber = DanssEvent->runNumber;
DanssPair->SiPmCleanEnergy[0] = SavedEvent->SiPmCleanEnergy;
DanssPair->PmtCleanEnergy[0] = SavedEvent->PmtCleanEnergy;
DanssPair->SiPmCleanEnergy[1] = DanssEvent->SiPmCleanEnergy;
DanssPair->PmtCleanEnergy[1] = DanssEvent->PmtCleanEnergy;
DanssPair->PositronHits = SavedEvent->PositronHits;
DanssPair->PositronEnergy = SavedEvent->PositronEnergy;
memcpy(DanssPair->PositronX, SavedEvent->PositronX, sizeof(SavedEvent->PositronX));
DanssPair->TotalEnergy = SavedEvent->TotalEnergy;
DanssPair->PositronSiPmEnergy = SavedEvent->PositronSiPmEnergy;
DanssPair->PositronPmtEnergy = SavedEvent->PositronPmtEnergy;
DanssPair->AnnihilationGammas = SavedEvent->AnnihilationGammas;
DanssPair->AnnihilationEnergy = SavedEvent->AnnihilationEnergy;
DanssPair->AnnihilationMax = SavedEvent->AnnihilationMax;
DanssPair->MinPositron2GammaZ = SavedEvent->MinPositron2GammaZ;
DanssPair->NeutronHits = DanssEvent->NeutronHits;
DanssPair->NeutronEnergy = DanssEvent->NeutronEnergy;
memcpy(DanssPair->NeutronX, DanssEvent->NeutronX, sizeof(DanssEvent->NeutronX));
DanssPair->gtDiff = (DanssEvent->globalTime - SavedEvent->globalTime) / GFREQ2US;
tmp = (DanssEvent->NeutronX[2] - SavedEvent->PositronX[2]) * (DanssEvent->NeutronX[2] - SavedEvent->PositronX[2]);
for (i=0; i<2; i++) if (DanssEvent->NeutronX[i] >= 0 && SavedEvent->PositronX[i] >= 0)
tmp += (DanssEvent->NeutronX[i] - SavedEvent->PositronX[i]) * (DanssEvent->NeutronX[i] - SavedEvent->PositronX[i]);
DanssPair->Distance = sqrt(tmp);
DanssPair->DistanceZ = DanssEvent->NeutronX[2] - SavedEvent->PositronX[2];
DanssPair->gtFromVeto = (SavedEvent->globalTime - VetoEvent->globalTime) / GFREQ2US;
DanssPair->VetoHits = VetoEvent->VetoCleanHits;
DanssPair->VetoEnergy = VetoEvent->VetoCleanEnergy;
DanssPair->DanssEnergy = (VetoEvent->SiPmCleanEnergy + VetoEvent->PmtCleanEnergy) / 2;
DanssPair->gtFromShower = (SavedEvent->globalTime - ShowerEvent->globalTime) / GFREQ2US;
DanssPair->ShowerEnergy = (ShowerEvent->SiPmCleanEnergy + ShowerEvent->PmtCleanEnergy) / 2;
DanssPair->NNHits = DanssEvent->NHits;
DanssPair->NPHits = SavedEvent->NHits;
NeutronCorr(DanssPair); // correct positron energy based on neutron position if only one coordinate of positron cluster is available
DanssPair->PositronEnergy = DanssPair->PositronEnergy;
DanssPair->PositronPmtEnergy = DanssPair->PositronPmtEnergy;
DanssPair->PositronSiPmEnergy = DanssPair->PositronSiPmEnergy;
}
int main(int argc, char **argv)
{
const char LeafList[] =
"number[2]/L:" // event numbers in the file
"globalTime[2]/L:" // global times
"unixTime/I:" // linux time, seconds
// "runNumber/I:" // run number
"SiPmCleanEnergy[2]/F:" // Full Clean energy SiPm
"PmtCleanEnergy[2]/F:" // Full Clean energy Pmt
// "positron cluster" parameters
"PositronHits/I:" // hits in the cluster
"PositronEnergy/F:" // Energy sum of the cluster (SiPM)
"TotalEnergy/F:" // Total energy long. corrected
"PositronSiPmEnergy/F:" // SiPM energy in the cluster, corrected
"PositronPmtEnergy/F:" // PMT energy in the cluster, corrected
"PositronX[3]/F:" // cluster position
"AnnihilationGammas/I:" // number of possible annihilation gammas
"AnnihilationEnergy/F:" // Energy in annihilation gammas
"AnnihilationMax/F:" // Max hit energy beyond the cluster
"MinPositron2GammaZ/F:" // Z-distance to the closest gamma
// "neutron" parameters
"NeutronHits/I:" // number of hits considered as neutron capture gammas
"NeutronEnergy/F:" // Energy sum of above (SiPM)
"NeutronX[3]/F:" // center of gammas position
// Pair parameters
"gtDiff/F:" // time difference in us (from 125 MHz clock)
"Distance/F:" // distance between neutron and positron, cm
"DistanceZ/F:" // in Z, cm
// Environment
"gtFromPrevious/F:" // time from the previous hit before positron, us
"PreviousEnergy/F:" // energy of the previous event
"gtToNext/F:" // time to the next hit after neutron, counted from positron, us
"NextEnergy/F:" // energy of the next event
"EventsBetween/I:" // Events between positron and neutron
// Veto
"gtFromVeto/F:" // time from the last Veto event
"VetoHits/I:" // hits in Veto counters
"VetoEnergy/F:" // Energy in Veto counters
"DanssEnergy/F:" // Veto Energy in Danss (Pmt + SiPm)/2
"gtFromShower/F:" // time from large energy shower in DANSS
"ShowerEnergy/F:" // shower event energy in DANSS (Pmt + SiPm)/2
// Hits
"NPHits/I:" // Number of hits in "positron event"
"NNHits/I"; // Number of hits in "neutron event"
// Copy DANSSEvent tree from the original MC
const char MCLeafList[] =
"EventID/D:"
"ParticleEnergy/D:"
"EnergyLoss/D:"
"DetectorEnergyLoss/D:"
"CopperEnergyLoss/D:"
"GdCoverEnergyLoss/D:"
"X/D:Y/D:Z/D:"
"DirX/D:DirY/D:DirZ/D:"
"TimelineShift/D:"
"FluxFlag/B";
struct DanssPairStruct7 DanssPair;
struct DanssEventStruct7 DanssEvent;
struct DanssEventStruct7 Neutron;
struct DanssEventStruct7 Positron;
struct DanssEventStruct7 Veto;
struct DanssEventStruct7 Shower;
struct DanssInfoStruct4 DanssInfo;
struct DanssInfoStruct SumInfo;
struct HitStruct HitArray[3]; // 0 - positron, 1 - neutron, 2 - place for input
struct RawHitInfoStruct RawHits;
struct MCEventStruct MCEvent;
struct MCEventStruct MCEventCopy;
struct TrigArrayStruct *TrigArray = NULL;
TChain *EventChain = NULL;
TChain *InfoChain = NULL;
TChain *RawChain = NULL;
TTree *tOut = NULL;
TTree *tRandom = NULL;
TTree *tMuRandom = NULL;
TTree *InfoOut = NULL;
TFile *fOut = NULL;
FILE *fList;
char str[1024];
char strl[1600];
long long iEvt, nEvt, rEvt;
int PairCnt[3], WinCnt[3];
int PickUpCnt;
int i;
int iLoop;
double tShift;
char *ptr;
int IsMC = 0;
int LoopCnt, inCnt, outCnt, gtDiff;
int iDiff, iDiffUsed;
double rDiff;
// Check number of arguments
if (argc < 3) {
printf("Usage: %s list_file.txt|input_file.root output_file.root\n", argv[0]);
printf("Will process files in the list_file and create root-file\n");
return 10;
}
// The first argument must be a single root file or a list
ptr = strrchr(argv[1], '.');
if (!ptr) {
printf("Strange file extention: .txt or .root expected\n");
return 15;
}
// Create Input chains
EventChain = new TChain("DanssEvent");
RawChain = new TChain("RawHits");
InfoChain = new TChain("DanssInfo");
// Add files to input chains
if (!strcmp(ptr, ".txt")) {
fList = fopen(argv[1], "rt");
if (!fList) {
printf("Can not open list of files %s: %m\n", argv[1]);
return 20;
}
for(;;) {
if (!fgets(str, sizeof(str), fList)) break;
ptr = strchr(str, '\n');
if (ptr) *ptr = '\0';
EventChain->Add(str);
RawChain->Add(str);
InfoChain->Add(str);
}
fclose(fList);
} else if (!strcmp(ptr, ".root")) {
EventChain->Add(argv[1]);
if (RawChain) RawChain->Add(argv[1]);
InfoChain->Add(argv[1]);
} else {
printf("Strange file extention: .txt or .root expected\n");
return 30;
}
// Check RawHits
nEvt = EventChain->GetEntries();
rEvt = RawChain->GetEntries();
if (rEvt > 0 && rEvt != nEvt) {
printf("Event chain (%d) and RawHits chain (%d) do not match\n", nEvt, rEvt);
return 40;
} else if (rEvt == 0) {
delete RawChain;
RawChain = NULL;
}
// Is this MC ?
if(EventChain->GetBranch("MCEvent")) IsMC = 1;
// Create output directory
strncpy(str, argv[2], sizeof(str));
sprintf(strl, "mkdir -p %s", dirname(str));
if (system(strl)) {
printf("Can not crete target directory: %m\n");
return -5;
}
// Open output file
fOut = new TFile(argv[2], "RECREATE");
if (!fOut->IsOpen()) {
printf("Can not open the output file %s: %m\n", argv[2]);
return -10;
}
// Create output Chains
tOut = new TTree("DanssPair", "Time Correlated events");
tOut->Branch("Pair", &DanssPair, LeafList);
tOut->Branch("PHitE", HitArray[0].E, "PHitE[NPHits]/F");
tOut->Branch("PHitT", HitArray[0].T, "PHitT[NPHits]/F");
tOut->Branch("PHitType", HitArray[0].type, "PHitType[NPHits]/I");
tOut->Branch("NHitE", HitArray[1].E, "NHitE[NNHits]/F");
tOut->Branch("NHitT", HitArray[1].T, "NHitT[NNHits]/F");
tOut->Branch("NHitType", HitArray[1].type, "NHitType[NNHits]/I");
if (IsMC) tOut->Branch("MCEvent", &MCEventCopy, MCLeafList);
tRandom = new TTree("DanssRandom", "Random coincidence events");
tRandom->Branch("Pair", &DanssPair, LeafList);
tRandom->Branch("PHitE", HitArray[0].E, "PHitE[NPHits]/F");
tRandom->Branch("PHitT", HitArray[0].T, "PHitT[NPHits]/F");
tRandom->Branch("PHitType", HitArray[0].type, "PHitType[NPHits]/I");
tRandom->Branch("NHitE", HitArray[1].E, "NHitE[NNHits]/F");
tRandom->Branch("NHitT", HitArray[1].T, "NHitT[NNHits]/F");
tRandom->Branch("NHitType", HitArray[1].type, "NHitType[NNHits]/I");
if (IsMC) tRandom->Branch("MCEvent", &MCEventCopy, MCLeafList);
tMuRandom = new TTree("DanssMuRandom", "Random muon coincidence events");
tMuRandom->Branch("Pair", &DanssPair, LeafList);
tMuRandom->Branch("PHitE", HitArray[0].E, "PHitE[NPHits]/F");
tMuRandom->Branch("PHitT", HitArray[0].T, "PHitT[NPHits]/F");
tMuRandom->Branch("PHitType", HitArray[0].type, "PHitType[NPHits]/I");
tMuRandom->Branch("NHitE", HitArray[1].E, "NHitE[NNHits]/F");
tMuRandom->Branch("NHitT", HitArray[1].T, "NHitT[NNHits]/F");
tMuRandom->Branch("NHitType", HitArray[1].type, "NHitType[NNHits]/I");
if (IsMC) tMuRandom->Branch("MCEvent", &MCEventCopy, MCLeafList);
InfoOut = new TTree("SumInfo", "Summary information");
InfoOut->Branch("Info", &SumInfo,
"gTime/L:" // running time in terms of 125 MHz
"startTime/I:" // linux start time, seconds
"stopTime/I:" // linux stop time, seconds
"events/L" // number of events
);
memset(&SumInfo, 0, sizeof(struct DanssInfoStruct));
// Set input branch addresses
EventChain->SetBranchAddress("Data", &DanssEvent);
EventChain->SetBranchAddress("HitE", &HitArray[2].E);
EventChain->SetBranchAddress("HitT", &HitArray[2].T);
EventChain->SetBranchAddress("HitType", &HitArray[2].type);
if (IsMC) EventChain->SetBranchAddress("MCEvent", &MCEvent);
if (RawChain) RawChain->SetBranchAddress("RawHits", &RawHits);
InfoChain->SetBranchAddress("Info", &DanssInfo);
// Create trigger arryay to facilitate searches
TrigArray = (struct TrigArrayStruct *) malloc(nEvt * sizeof(struct TrigArrayStruct));
if (!TrigArray) {
printf("TrigArray[%d] memory allocation failed: %m\n", nEvt);
goto fin;
}
for (iEvt =0; iEvt < nEvt; iEvt++) {
EventChain->GetEntry(iEvt);
if (RawChain) RawChain->GetEntry(iEvt);
TrigArray[iEvt].globalTime = DanssEvent.globalTime;
TrigArray[iEvt].flags = 0;
if ((RawChain) ? IsIgnore(&DanssEvent, &RawHits) : IsIgnore(&DanssEvent, NULL)) TrigArray[iEvt].flags |= FLAG_IGNORE;
// if (IsNeutron(&DanssEvent) && !IsVeto(&DanssEvent)) TrigArray[iEvt].flags |= FLAG_NEUTRON;
if (IsNeutron(&DanssEvent)) TrigArray[iEvt].flags |= FLAG_NEUTRON;
if (IsPositron(&DanssEvent)) TrigArray[iEvt].flags |= FLAG_POSITRON;
if (IsVeto(&DanssEvent)) TrigArray[iEvt].flags |= FLAG_VETO;
if (IsShower(&DanssEvent)) TrigArray[iEvt].flags |= FLAG_SHOWER;
}
// printf("EventChain: %d RawHits: %d\n", nEvt, rEvt);
memset(PairCnt, 0, sizeof(PairCnt));
memset(WinCnt, 0, sizeof(WinCnt));
memset(&Veto, 0, sizeof(Veto));
memset(&Shower, 0, sizeof(Shower));
PickUpCnt = 0;
for (iEvt =0; iEvt < nEvt; iEvt++) {
if (TrigArray[iEvt].flags & FLAG_IGNORE) {
PickUpCnt++;
continue; // ignore PickUp and 1 Hz events
}
EventChain->GetEntry(iEvt);
// Shower
if (TrigArray[iEvt].flags & FLAG_SHOWER) memcpy(&Shower, &DanssEvent, sizeof(struct DanssEventStruct7));
// Veto
if (TrigArray[iEvt].flags & FLAG_VETO) {
memcpy(&Veto, &DanssEvent, sizeof(struct DanssEventStruct7));
continue;
}
// Get Neutron
if (TrigArray[iEvt].flags & FLAG_NEUTRON) {
memcpy(&Neutron, &DanssEvent, sizeof(struct DanssEventStruct7));
CopyHits(&HitArray[1], &HitArray[2], DanssEvent.NHits);
LoopCnt = 0;
WinCnt[0]++;
for (iLoop = 0; LoopCnt <= NRANDOM; iLoop++) {
tShift = iLoop * RSHIFT;
if (iLoop) { // check the isolation window - looking backward from neutron and around the signal/background window
WinCnt[1]++;
inCnt = outCnt = 0;
for (i=iEvt-1; i>=0; i--) {
if (TrigArray[i].flags & FLAG_IGNORE) continue;
gtDiff = TrigArray[i].globalTime + tShift * GFREQ2US - Neutron.globalTime;
if (gtDiff >= -TISOLATIONM * GFREQ2US && gtDiff < -MAXTDIFF * GFREQ2US) {
outCnt++; // outer count
} else if (gtDiff >= -MAXTDIFF * GFREQ2US && gtDiff < 0) {
// if ((TrigArray[i].flags & FLAG_POSITRON) && !(TrigArray[i].flags & FLAG_VETO)) {
if (TrigArray[i].flags & FLAG_POSITRON) {
inCnt++;
} else {
outCnt++;
}
} else if (gtDiff >= 0 && gtDiff <= TISOLATIONP * GFREQ2US) {
outCnt++;
} else if (gtDiff < -TISOLATIONM * GFREQ2US) {
break; // end of search
}
}
if (inCnt > 1 || outCnt > 0) {
WinCnt[2]++;
continue; // don't count this window because of isolation cut
}
}
// Now look backward for positron in the region ([-50, 0] - iLoop*RSHIFT) us
inCnt = 0;
for (i=iEvt-1; i>=0; i--) {
if (TrigArray[i].flags & FLAG_IGNORE) continue;
gtDiff = TrigArray[i].globalTime + tShift * GFREQ2US - Neutron.globalTime;
if (gtDiff >= -MAXTDIFF * GFREQ2US && gtDiff < 0 && (TrigArray[i].flags & FLAG_POSITRON)) {
inCnt++;
break;
}
if (gtDiff < -MAXTDIFF * GFREQ2US) break;
}
if (inCnt) { // Positron found
EventChain->GetEntry(i);
memcpy(&Positron, &DanssEvent, sizeof(struct DanssEventStruct7));
CopyHits(&HitArray[0], &HitArray[2], DanssEvent.NHits);
Positron.globalTime += tShift * GFREQ2US; // assume it here !!!
MakePair(&Neutron, &Positron, &Veto, &Shower, &DanssPair);
if (IsMC) memcpy(&MCEventCopy, &MCEvent, sizeof(MCEvent)); // Copy MC DANSSEvent for positron
// Isolation for Neutron position
// look backward
for (i=iEvt-1;i>=0;i--) {
if (TrigArray[i].flags & FLAG_IGNORE) continue;
if (TrigArray[i].globalTime > Positron.globalTime) {
DanssPair.EventsBetween++;
} else if (TrigArray[i].globalTime < Positron.globalTime && !(TrigArray[i].flags & FLAG_VETO)) {
EventChain->GetEntry(i);
DanssPair.gtFromPrevious = (Positron.globalTime - DanssEvent.globalTime) / GFREQ2US;
DanssPair.PreviousEnergy = (DanssEvent.SiPmCleanEnergy + DanssEvent.PmtCleanEnergy) / 2;
break;
}
}
if (i < 0) DanssPair.gtFromPrevious = RSHIFT; // something large
// look forward
for (i=iEvt+1;i<nEvt;i++) {
if (TrigArray[i].flags & FLAG_IGNORE) continue;
EventChain->GetEntry(i);
DanssPair.gtToNext = (DanssEvent.globalTime - Positron.globalTime) / GFREQ2US;
DanssPair.NextEnergy = (DanssEvent.SiPmCleanEnergy + DanssEvent.PmtCleanEnergy) / 2;
break;
}
if (i == nEvt) {
DanssPair.gtToNext = RSHIFT; // something large
DanssPair.NextEnergy = 0;
}
// Fill proper tree
if (iLoop) {
tRandom->Fill();
PairCnt[1]++;
} else {
tOut->Fill();
PairCnt[0]++;
// for muon free events find in future random coincidence with muons
iDiffUsed = -1;
if (DanssPair.gtFromVeto > MUTDIFF) for (i=iEvt+1; i<nEvt;i++) {
if (TrigArray[i].globalTime - Positron.globalTime > NRANDOM * RSHIFT * GFREQ2US) break;
if (TrigArray[i].flags & FLAG_IGNORE) continue;
if (!(TrigArray[i].flags & FLAG_VETO)) continue;
iDiff = 1 + (TrigArray[i].globalTime - Positron.globalTime) / (GFREQ2US * RSHIFT);
if (iDiff == iDiffUsed) continue; // we already have an event from a close muon
rDiff = (Positron.globalTime + iDiff * GFREQ2US * RSHIFT - TrigArray[i].globalTime) / GFREQ2US;
if (rDiff >= 0 && rDiff < MUTDIFF) { // Found - we need to fill info about veto
EventChain->GetEntry(i);
DanssPair.gtFromVeto = rDiff; // emulated time
DanssPair.VetoHits = DanssEvent.VetoCleanHits;
DanssPair.VetoEnergy = DanssEvent.VetoCleanEnergy;
DanssPair.DanssEnergy = (DanssEvent.SiPmCleanEnergy + DanssEvent.PmtCleanEnergy) / 2;
tMuRandom->Fill();
PairCnt[2]++;
iDiffUsed = iDiff;
}
}
}
}
LoopCnt++;
}
}
}
for(i=0; i<InfoChain->GetEntries(); i++) {
InfoChain->GetEntry(i);
SumInfo.upTime += DanssInfo.upTime;
SumInfo.stopTime = DanssInfo.stopTime;
SumInfo.events += DanssInfo.events;
if (!i) SumInfo.startTime = DanssInfo.startTime;
}
InfoOut->Fill();
printf("%Ld events processed with %d randomizing loops - %d/%d/%d pairs found. Aquired time %7.0f s. PickUp count = %d\n",
iEvt, NRANDOM, PairCnt[0], PairCnt[1], PairCnt[2], SumInfo.upTime / GLOBALFREQ, PickUpCnt);
printf("%d neutron candidates; %d windows checked; %d windows rejected\n", WinCnt[0], WinCnt[1], WinCnt[2]);
fin:
if (EventChain) delete EventChain;
if (InfoChain) delete InfoChain;
if (RawChain) delete RawChain;
if (InfoOut) InfoOut->Write();
if (tOut) tOut->Write();
if (tRandom) tRandom->Write();
if (tMuRandom) tMuRandom->Write();
if (fOut) fOut->Close();
if (TrigArray) free(TrigArray);
return 0;
}