@@ -78,8 +78,8 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
78
78
country,gender\time,2013,2014,2015
79
79
Belgium,Male,5472856,5493792,5524068
80
80
Belgium,Female,5665118,5687048,5713206
81
- France,Male,31772665,31936596,32175328
82
- France,Female,33827685,34005671,34280951
81
+ France,Male,31772665,32045129,32174258
82
+ France,Female,33827685,34120851,34283895
83
83
Germany,Male,39380976,39556923,39835457
84
84
Germany,Female,41142770,41210540,41362080
85
85
@@ -93,8 +93,8 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
93
93
country gender\time 2013 2014 2015
94
94
Belgium Male 5472856 5493792 5524068
95
95
Belgium Female 5665118 5687048 5713206
96
- France Male 31772665 31936596 32175328
97
- France Female 33827685 34005671 34280951
96
+ France Male 31772665 32045129 32174258
97
+ France Female 33827685 34120851 34283895
98
98
Germany Male 39380976 39556923 39835457
99
99
Germany Female 41142770 41210540 41362080
100
100
@@ -108,7 +108,7 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
108
108
country,gender\time,2013,2014,2015
109
109
Belgium,Male,5472856,5493792,5524068
110
110
Belgium,Female,5665118,5687048,5713206
111
- France,Female,33827685,34005671,34280951
111
+ France,Female,33827685,34120851,34283895
112
112
Germany,Male,39380976,39556923,39835457
113
113
>>> # by default, cells associated with missing label combinations are filled with NaN.
114
114
>>> # In that case, an int array is converted to a float array.
@@ -117,7 +117,7 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
117
117
Belgium Male 5472856.0 5493792.0 5524068.0
118
118
Belgium Female 5665118.0 5687048.0 5713206.0
119
119
France Male nan nan nan
120
- France Female 33827685.0 34005671 .0 34280951 .0
120
+ France Female 33827685.0 34120851 .0 34283895 .0
121
121
Germany Male 39380976.0 39556923.0 39835457.0
122
122
Germany Female nan nan nan
123
123
>>> # using argument 'fill_value', you can choose which value to use to fill missing cells.
@@ -126,7 +126,7 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
126
126
Belgium Male 5472856 5493792 5524068
127
127
Belgium Female 5665118 5687048 5713206
128
128
France Male 0 0 0
129
- France Female 33827685 34005671 34280951
129
+ France Female 33827685 34120851 34283895
130
130
Germany Male 39380976 39556923 39835457
131
131
Germany Female 0 0 0
132
132
@@ -140,8 +140,8 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
140
140
country,gender,2013,2014,2015
141
141
Belgium,Male,5472856,5493792,5524068
142
142
Belgium,Female,5665118,5687048,5713206
143
- France,Male,31772665,31936596,32175328
144
- France,Female,33827685,34005671,34280951
143
+ France,Male,31772665,32045129,32174258
144
+ France,Female,33827685,34120851,34283895
145
145
Germany,Male,39380976,39556923,39835457
146
146
Germany,Female,41142770,41210540,41362080
147
147
>>> # read the array stored in the CSV file as is
@@ -177,13 +177,13 @@ def read_csv(filepath_or_buffer, nb_axes=None, index_col=None, sep=',', headerse
177
177
Belgium,2014,11180840
178
178
Belgium,2015,11237274
179
179
France,2013,65600350
180
- France,2014,65942267
181
- France,2015,66456279
180
+ France,2014,66165980
181
+ France,2015,66458153
182
182
>>> # to read arrays stored in 'narrow' format, you must pass wide=False to read_csv
183
183
>>> read_csv(fname, wide=False)
184
184
country\time 2013 2014 2015
185
185
Belgium 11137974 11180840 11237274
186
- France 65600350 65942267 66456279
186
+ France 65600350 66165980 66458153
187
187
"""
188
188
if not np .isnan (na ):
189
189
fill_value = na
0 commit comments