-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglamour_testcases_cuz_im_too_lazy.py
89 lines (69 loc) · 2.69 KB
/
glamour_testcases_cuz_im_too_lazy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
glamour_testcases_cuz_im_too_lazy is doing some systematic styling on a test report that is really annoying to do manually
"""
import pandas as pd
import numpy as np
import itertools
from datetime import datetime
now = datetime.now()
timestamp = datetime.timestamp(now)
df = pd.read_excel("/home/ehab/Downloads/NNII.xlsx", header=None)
df.columns = ['TestName', 'Data']
for i in df.index:
if type(df["Data"][i]) is float:
pass
else:
df["Data"][i] = df["Data"][i].title()
# generate n/a combination
def na_combination(l):
yield from itertools.product(*([l] * 3))
def make_na_list(l):
na_list = []
for x in na_combination(l):
na_list.append(''.join(x))
return na_list
# save app header
rows_meta_idx = []
def save_app_header():
global rows_meta_idx
data_string = "Required Data Fields"
rows_meta_idx = list(df['Data'][df['Data'] == data_string].index)
row_meta_data = []
app_list_obj = []
for idx in rows_meta_idx:
app_list_obj.append(df.loc[idx])
return app_list_obj
# drop app header
df_wo_app_header = None
def drop_app_header():
global df_wo_app_header
df_wo_app_header = df.drop(index=rows_meta_idx)
def glamour_testcases_cuz_im_too_lazy():
# handel delete test cases
nan_data_ser = (df_wo_app_header.Data.isnull())
nan_testcase_ser = df_wo_app_header.loc[nan_data_ser, 'TestName']
for nan_testcase_idx in nan_testcase_ser.index:
updated_nan_testcase = "Delete " + nan_testcase_ser[nan_testcase_idx].title() + " Feature"
nan_testcase_ser[nan_testcase_idx] = updated_nan_testcase
df_wo_app_header.at[nan_testcase_idx, "TestName"] = nan_testcase_ser[nan_testcase_idx]
# handel other test cases
data_ser = (df_wo_app_header.Data.notnull())
testcase_ser = df_wo_app_header.loc[data_ser, 'TestName']
for testcase_idx in testcase_ser.index:
if type(testcase_ser[testcase_idx]) is not float:
updated_testcase = "Setup " + testcase_ser[testcase_idx].title() + " Feature"
testcase_ser[testcase_idx] = updated_testcase
df_wo_app_header.at[testcase_idx, "TestName"] = testcase_ser[testcase_idx]
# glowing it all back together
for row in df_wo_app_header.index:
df.at[row, "TestName"] = df_wo_app_header["TestName"][row]
# fill nan empty cells in 'Data' with value n/a
df["Data"].fillna("n/a", inplace = True)
# save DF into excel
def save_df(df_arg):
df_arg.to_excel ('/home/ehab/glamour_testcases_cuz_im_too_lazy/sheet_'+str(timestamp)+'.xlsx', index = False, header=True)
if __name__ == "__main__":
#save_app_header()
drop_app_header()
glamour_testcases_cuz_im_too_lazy()
save_df(df)